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THE OPTIMAL ASSIGNMENT PROBLEM

1. Description of the Problem

The optimal assignment .problem is concerned with
stuations of the following kind:' aopertain company
haste number of job openings and there area number
of applicants available for the jobs. The.company's
problem is to deAde how to assign applicants to jabs
in a way, which will maximize Ale benefitto the tom-

L.
1 pany. Before making the assignment each applicant

'is given a set of tests which are,designedto.measure

. his aptitude for each of-the jobs. ,5hese test scores.
. - -can be displayed by means of a .table as illustrated

,

below for the case of three applicants and three jobs

A J "J
- 1 2 3

7
(1.1)

3

Al

A2

A3

10 8
4
4 8

9

The number in 'rowi and calumn. ) of the table

which we call.position ( -i,j) gives the score of"theth th " .applicant for the j job. 'One may think of
these aptitudes as measuring' the value of the appli-
cant to thecompany when assigned to the given job.
Thus, in the example Afwis worth, say, 10 dollars
per hour when assigned to Ji but only 7 dollars py
hour when assigned to.13. If the scores are inter- .
preted this way then clearly the company will
achieve maximum benefit by assigning applicants in
such away as to maximize the sum of thelscores.

Such an assignment is called anoptimat assignment.'
In the example the optimal assignment can be found
by inspection, for observe that Al is best 'at J
A
2

is best at J
2

and oreis best at J
3'

' Theref

1

^

the optimal assignment is obtained by assigning each
person to the job he does best. It is convenient to
indicate the assignment by checking-the corresponding
entries in the table as.indicated below:

1

.
J
1

J
2

J1

A
1

10 8, 7

4 3

A
3

6 4 9/.

yithout making any further cartufation we know that
the assignment checked in (1.2) is optimal, fbr since
every applicant is assigned to the job he does best,

.no .other assigvent could raise the score of any appli-
cant, hence the total score can not,be raised.

Of course there was considerable luck in the above
example, for it was simply fortuitous that each appli-
cant was best at a,different job. In general one cannot
expect this to happen. +fere is another example:

J
1

J
2

J
3

Al 10,7 8 6

1.3) A2 8 4 7
.A3 6 9 4

Notice that in this case it is no longer possible-to
assign each person to the job he does heat, fci both Al
and A

2 are best at J1. Nevertheless the optimal solution
is easily found by changing the point of view. Instead
of 'trying to assign each applicantto the job he does
best we try to pick the best man for each job. The best
man for J

1
is A

l'
for J

2
is A

3
ana for J

3
is A

2'Therefore' the optimal assignment is the bne given by the
checked entries in (1.3).

2
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.The procedure used in these, examples can be described

concisely as follows: the tables like (1.1), (1.2), and

(1.3) are` called assignment matrices. In the first

example wechose the largest entry in each row; It

turned out that each of these entries wasiin a different
1

,Column so that .an assignment was obtained Which, was,

therefore optimal. In such cases we yill,saythat the

matrix in quegtion has a row-max usignment. IR the

second example the matrix did not have a raw-max assign-,

ment but it did have a column-max assignment, meaning

' that the maximum entries in e.ach'column'were all in

different rows. Now in general a matrix need not have

either a row- or column-max'assignment as the following

example illustrates:

Al

J1 J2
J
3

7
(1.4) A2 8 4) 3

A3 9 6 4 ,

One sees at once that neither of the foregtang

methods works, for if each person was assigned to the

job he does best, then everyone would've assigned to

J
l'

and if each job was given to the bes.etmlan for the

job, then Al would be assigned to all three "jabs. It

is claimed that,the optimal assignment is,given Wthe

checked entries, which give the total value of the

assignment. to be 7 + 8 + 6 = 21. The reader should

verify that this is optimal, by simply,try,ing each of

the other five possible assignments and observing that

they give a lower total score. The reader shoul4 also

note the following facts. In this optimal aSsignmegt

only one applicant, A2, is assigned to the job he does

best, and in fact, Al is assigned to J3, the job he does

worst. LikAise, only J3 is assigned to the best man

for the job. Nevertheless, as we IIave seen, this

3

..,

assignment is optimal, and this-suggests that "common

sense methods" will

problems and that s

not be very helpful in solving such

me kind of; "theory" is needed.

Of course for small 3x3 examples, one can always

-find a solution by "trial anderror," meaning one

simply lists all possible assignments and chooses the
...-

one with-'the largest value. This procedure, however,

is cleaily imiiractieal for even moderate sized problems.

For example, if one'were to use the, method on a 5>(5

problem it would require likting 120-Possibilities

each of, which would involve performing -4 additions so

that 480 additions would be required. The method to

be presented in these notes will enable the reader

to sorve 8x8 problems by hand in a very moderate amount

, of time. If one were to do this by listing all

possibilities it'would'require over.250,000 additions.

In a general assignmencproblem the number of fobs

ana-applie4nts need not be equal. There may be more

applicants than jobs (m > n) in which case the company

will hire the n applicants givin it the highest total

value, or there may be more jobs than appliCants (n > m)

in which case the company 11 fill the m jobs which

givethe highest total value. However, there is a

simple'trick'whereby all problems Can#be,reduce,d to

the "square" case in which the number of jobs and

,applicants.are equal. If, say,. m > n then the a'ssign,

ment matrix has more rowsthan columns. Then'one

simply augments the matrix by 'adding m - n additional

,columns./4.11 O'f.whose entries are zero. This gives an

mxm matrix with m - n additional "dummy" jabs which

may be thought of as the job of being dnemployed. Now

clearly if one finds the solution to this problem one

has also obtained the solution to the original problem,

for assigning a person to a dummy job means not assigning ,

him at.all in the'orrginal problem. in a similar walc

if m < n one adds n - m rows of zeros. The reader should

4
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convince himself that a.soIutionfto,this n x n problem
also solves the original m x n woblem. From nowon ,

weewill restrict ourselves to the'square case: 'This
permits us to formalize the notion of an ass

si

gnmentin
the following way.

.
,

DEFINITION. An n.), n assig'nmentprcAlem consists of an
n x n matrix A. An assignment a consists .of a permutation
Eli,. i2, ..., in] of the integers from

1 to n. This
is to be read as follows: in the assign4ent a applicant
Al is assigned to job J

1'4 applicant X, is assigned to .1
job S. , etc. The value of the assignment .:,`denoted by

42. i

v(cf,jisthprwmbera....a. t ... +'a .

ru
. An assign--ill

a21
n

ment a having the ma 'mum value among All possible
'assignmnts'is called n'optimcirassignment.

I\

Using the above"notati.on the bptimal assignment for
,(1.1) is [1, 2, 3] with value all + a22 + a33 = 27. The
optimal assignment foi (1.3) is [1", 3, 2] with value

. all + a23 + a32 % 26 and the optimal assignment for
. ,_

, (1.4) is[3, 1. 21 with the value a,3 + a21 a32 = 2\1.

t '

a13

.

Exercises,
.

1.. How many possible assignments arch therein an nxn problem?'

For thenatrix below calculate the value of each ofthe

following assignments:

[1, 2, 3, 4] [4, 3, 2, 1] [3,'1, 2,

9 8 3 / 7/
.7 7 5

6 0
\ 0 6 '5 4

4] [2, 1, 4, 1]

'"

3. For the above matrix rite in the frms[ilv i2, i3, i4]

the assignment corresponding to the checked entries of

the maAc. Do the circled entries above correspodd to

. .

an assignment? Why?
V

5

1 0

A Paradox .

Ref P re proceeding to develop the theory. for the

'as'signment problem it is worthwhile point.ing out one

Curther Property of suchproblems.H We return to the

thud example given by the table

(241).

I,

10 j 8 7
A, 4 3

A-9I 6 .4

Where the efitriei in the ontAnal assignment halie been

checked. Now suppose a fourth applicant'A4 appears, is

tested', and obtains the following sc ores' w

(2.2)

r

J3

A
4

2 3.' 5

The questibn'which now arises is whether A
4

should

' replace any of the three applicants of -the original
.

assignmept. dlyserve that his test scorNfor,each ,

job are lower by 6, 3, and npeints.resvectivelY thati 4

the scores of the people assigned to the jobs 'in (2.1).

,At first glance one might conclude therefore that A
4

is

less qualified than th present work force a4d should

not be hired, but.this turns.out to beea wrong ton- :

clusion, for if A4 is assigned to J3, Al tolk and
A
3

to J
1

the value of the assignment is 5 8 + 9 = 22

which is an improvedent over the previous assignment

whose value was 21. Thus, it is optimal to l'eplaceA2

by A4 veil though A2's overall score is well above that

of A4. Once/again,,Ne.see tha t fommonlseRse doe? not

seem to be very bglpskil im:att,cking these problems.

4

Exercises

4. Find bye listing all possibilities the Optimal assignment 14t'
the table given by



Al

A
2

A3

J1 J
2

J3

2

2 0

2 2 1

5. Suppose am above is increased from 6 to 7. Will the value

of'the optimal assignment increate? In general for which
, .

values of
j

a.
i

in Exercise 4 will an increase of one unit

produce an increase in the value.of the optimal assig e t?

6. For which a."-in Exercise 4 will a decrease of one unit

produce a decrease in the value of the optimal assignment?

7. If afourtk applicant A4 becomes available with scores

(1, 4, 0) 'for the three jobs will it be possible to find

an improved assignment in Exercise 4? If so who will

A
4

replace?

8, Same as Exercise 7 if A
4

has scores (4, 3, 1).

9. Recall in the example given by (1.4) the optimal assignment

assigned only one person to the job he does best and only

one job to the perion who does it best. Show by giving an

example that one can have an n x n assignment problem in

which this same thing occurs.

--10. Is it possible to have an optimal assignment in which no

one is assigned to the job he does best? If so giVe an

example. If not give a proof,of the impossibility.

(This is a somi,euhat'more,difficult exercise.)

3. Preliminary Theory - (Wages and Profits)

This section is.dioncerned with a simple ,but funda-

mental property of assignMent problems which will play

the key role in the theory to follow.=

Twon x n- matrices A and A! are called equivalent
Af

if they have the same set of optimal agsignments meaning

that evezy assignment which is optimal for one is optimal'

7

1?.

4

for the other. Suppose now that A' is the matrix obtained

from A by adding or subtracting a constant number w.
1

to -

everr entry in the i
th
:row of A. The claim is that the

matrices A,and A''areequivalent. To see this et a be

any assignment and let v(a) and v'(a) be the va ue of a

for the matrices A and A' respectively. Then v'(a) =

v(a)+wsothattheeffectofaddingw.simply changes
the value of all assignments by the constant amount wi,'

and it is clear at adding such a constant to all

assignments will not change their comparative values.

That is, if.ond assignment gives a higher value than

another on A it will also de so on A'. In particular

then, the optimal assignments on A are the same as those

on A', The same argument applies if a constant p is

added to all entries in the j th
column of A. We can

state this formally as follows:

Theorem 1: If a constant is added to all entries in any

row or column of an assignment matrix, the new matrix

obtained is equivalent to the original one.

Of course ane can add constants to any number of

the rows or columns of A-and all the matrices obtained

will be equivalent to A. The idea of our algorithm for

solving the assignment problem is to perform a sequence

of additions ,(or subtractions) of constants to the rows

of A until we obtain a matrix A' equivalent to A for

which the optimal assignment is "obvious" in that the

matrix wilj have a column-max assignment as described,

in Section 1. To illustrate this consider''again the..
.

matrix given by

10 8 71

3.1) 8 3

9 6 4
. .

in which:'the optimai,assignment,has been checked.

(Henccforth'we-omit. the row and column headings'Ai ,

and ..7!..) 'The optimal assignment-here is definitely
3

..

1

A

8



not column-max, but the question,is whether one can add .

or subtract constants to the rows in such a way as to

',obtain an equivalent matrix for which the given assign-
ment is.a column-mak. By trying various things one

discovers,that by subtracting 3 from Tow 1 and 1 from

row 3 one gets the matrix

(3.2)
1111PIR
MUNIman

where the entries which are.maximal in their columns

have been circled. -pbserve that the checked entries

in this matrix provide a column-max assignment and

therefore the optimal assignment is [3, 1, 2]'. But

by Theorem.1 this.matrix is equivalent to the original

one and hence this must also be an optimal assignment

for the original problem. Notice that we now have a

proof.of the optimality of this assignment which does

not'reguire finding the values of the other five

assiOments.

Next consider the case of (3.1) with the fourth

applicant with` scores (2, 3, S),. By introducing a

dummy job we get a4 x 4 problem whose matrix is given
by

(3.3)

8 7 0

8 4 3 0
9 6 4 0

'2 3 '5/ 0

where the optimal assignment [2, 4, 1, 3] has been

marked. In order. to verify directly that the assign-

ment is optimal, one would have to calculate, the value

of the.other 23 assignments. Instead.let us again Nt-y

to find numbers whicNhen subtracted from the rows

Make the .given assignment a column-max assignment.--

In trying various things one finds that by subtracting

2 from row 1 we get

9

(3. 4)

Q

. where again maximal entries in each column have been

circled, and we see for this matrix the given assign-

ment'is a column-max, and so we have a Proof that the

given assigment is indeed optimal.

The process'of subtracting constants from the

rows of the assignient matrix has an.inteftsting

economic interpretation which will be used in develop-

ing the later theory. Let us think of the number wi

as the wage paid to applicant Ai. Recall now. that a
13

may be interpreted as the value to the company, say

indollars,whenA.is assigned to J.J,
J

But if the

company.must pay Al the wage-wi then the company's

profit 'pj from assigning Ai to Jj is aij wi. In

other words, after subtracting the constants w from
rows of A the entries fn the new matrix obtained may

be thought of as thepropts the company"makes in filling
each of the jobs. It is then natural for the company

W. assign each job to the applicant which will give et

the greatest profit and this correspOnds'exactly to-a,

column-max assignment in this matrix.

We-will now introduce these' ideas into our compu-
tation. t turns out to 'be inconvenient to have to

rewrite the whole assignment matrix, every time.one

subtracts a constant from the rows. Instead of do:

this therefore we will simply list the wage constant
w next to the appropriate row of the matrix. In

addition we list at the head of column the maximum'
pj of the numbers aid wi, that is the maximum of the

profits obtained_by assigning Jf to the various appli-
cants. Finally, we circle the positions in the matrix

which yield these maximum_profits. 'Using this notation

10.



for-example (3.1)

g llowini array called

(3.5)
Wages

a,

In the same

one would have instead
1
al display of

Profits

of (342) the

the problem:

matrix (3.3)

Conditions (A), (B), and (C) are called the

feasibility con(litionq. The reader should check that

they are just another way of saying that p is the max-

imum of the'numbers a w
i

for i = 1, 2, n.

An assignment which uses only circled entries of

a display called a profit-max assignment, and the

ideas of this section-can be summarized in the follow-

ing theorem:

Theorem 2: A profit-max assignment is 'optimal.

5 4

3 , 10

4 3

1 4

wayinsjead Of rewriting

as (1.41 we would write.,;

Trofits

Wages
4

6 5 0

-2 cv 0

0 4 3

CV 4

3

e Once a ain tliese displays are just a kind of .

shorthand ay of saying that if each of the wage

constants' are subtracted from,the corresponding rows

the column maxima will be the profits listed at the

head of each column. In, view of our, present edonomic

interpretation we will refer to the assignments cor-

responding.to the checked entries in (3.5) and (3.6)

as profit-max assignments rather than column-max

assignments.
1

. We now give the general definition of a display

for an n'x n assignment problem. It consists of -

(1) the original assignment matrix A; (2) 2n constants

wi, pi, ...,,pn, and (3) certain circled

entries in the matrix-satisfying the conditions

(A) w. +'p.
3

> a.
13

,for all positions (i, j),
. (B) if w1 - + p3 . = a

ij
then a

ij
is circled.

(c) there is at least one circle in every
column of A.

1 G

a

11

1
The proof is just a matter of retracing our steps.

A profit maximizing assignment with' constants wi and

equivalent to a column-max 'assignment on the matrixpj

obtained by subtracting w
1

from the i f h row of A, but

from Theorem 1 subtracting' constants from rows of A

does not change the optimal assignment.

From now on our objective will be to find the "right"

wage constants w.
1

(and profits p.) so as to get a display

with a-profit maximizing assignmen't.' Of course we have

not proved that the desired constants exist, much less

have we provided a systematic method for finding them. For

the present, for small'pro,blemAe.reader should try,by

experiment and guess work to find the wi's-w.hichyofks.

The sections which follow will show how they can be'

found in an efficient manner for problems of any size.

Ire

Exercises

pj and give the
,

display showing that the assignment you obtained for that

problem is profit maximizing.

'12. Set up the problems of Exercise 8 and 9 as 4 x 4 assign-

ment problems. Find constants wi and p. and the display

with a profit-max solution.

13. Show by finding the appropriate wi and pj and giving the

display that the checked assignment below is optimal.

"I



9 8 . 7

7 7 5

7 6 5

?" 6. 5 4

4. The Simple hssignMent Problem

I

In order to use the method of Section 3 to solve
I

the assignment prob10 it is necessary to be able to
,recognize when an as ignMent matrix possesses a column-
max or profit-max assignment,. The following example
shows that this may not always .be easy.

4

(4.1)

As usual'

8 0 10 7

9 a 4 6

s 8 7 90
C) 9 0 .8 5

6 07() 7

9 (D.

the maximal entries in each

4

column

in which all numbers have been deleted. This problem can
*- 'also be interpreted in terms of fobs and applicants where

instead of each applicant having a test score for'each
job he merely gets a grade of paps or fail: If"Ai pas;es
the test fo'r-j a circle is entered,,in position (i,

andwesaythatA.qualifies, for J . .The problem is then
to assign as many appl.icantS as possible 0 jobs for

ich they are qualified. This is called.he sim(le
ass vont problem. (There is a second somewhat more

°

picturesque interpretation of this problem in which'
the rows and columns of the matrix correspond to men
and women rather than jobs and applicants and a circle
in position j) means that man i and woman j are
compatible. The.so-called marriage,Froblem then asks
that we pair off the mien and women in as many compatible
pairs as possible.)

4.

$Returning to (4.2), the question is whether a
complete assignment, i.e., assigning all five applicants,

' is possible. A little experimentation may convince
. Y

the reader that there seems to be no way of filling all* - '

it ,,,..i..;

the jObs with qualified applicants. What is neededhave ,.;, V
then is some sort of "proof" that in fact there is no
complete assignment. Now it turns out that one can
give such a Troof,for notice that if one considers
jobs J1, J3, and J4 there are rIly two applicants
Al and A

4
who qualify for them. Lt follows that there

is no way of filling all three of these jobs because
of the ihoriage of qtralified applicants, hence a complete

I s
a ignmeht is impossible.

The situation which occurs here.,is typical and very
important for what follows. We will say that a simple
assignment problem, has a bottLaneeN.f.there is some
set of r jobs for which fewer than r applicants are
qualified (or' in the marriage problem, r women who are
compatible with fewer than r

.
men). In the example

been circled, and one must now decide whether it is,
possible to choose a set of five \Fircled entries so
that-there will be exactly one entry in each row and
column. Note that the question has nothing to do with
the numbers in the matrix. One could as well consider
the following display

(4,2)

0 O. 0

0 0

. 0' 0

0 0 0

0 0
13

144

1:3
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ab'oWe the bottleneck consists of the set
('A1, A4;

J J J
4
}. . We now state the result which plays the

key role in the method for solving assignment probleMs..

Main Theorem: Every simple assignmen,t problem has
o

either a complete assignment or a bottleneck (but'
not.both).

1

The proof.ofthe theorem will emerge asve present
the solution method for the simple' assignment, problem
which will be illustrated .b\V`fifeans of t 'following
example.

1

We are given below the qualification matrix
a 10 x 10 simple assignment problem.

Al

A
2

A
3

A
4

(4.3) A5

.A
6

A
7

A.

A
9

A
10

already' ass,igned) J6. to A5 Lwhy not to Al ?) 37-.,to A,

(r,hy_not to A3,?). These assignments- have hen indicated'

by checking the appropriate position in (4.3).

the situation Changes abruptly when'we seek to

asslg -n J8 for we observe that all three qualified

applicants A3, 46, and A7 hate already been assigAed.

This does not mean', however, tat there is ho wa.57,2to

assigi J8. We will see that it, is possible to assign
J
8

if

method fo ding such a reassiiiiMent if it exists

cqnstitutes\the art of our comput,tional procedure.

It'is''called\the./a

J1, are rcagned,Properly. The

Jl J
2

J
3

J
4

J
S

J6 J7 J
8

J
9

J
10

0/

0,/ OY 0 .

or 0

.. 0 0
. -°-

0 0 . 0 0
.

o or 0 0

0 O 0

. 0 0 0 0

0 _ 0

0 0 0

ni method becuse it involves

attaching nume ical labels' to jobs an applica-nts in

the following

1) Label

4.4

The objeive is to find either a complete assignment
or a bottleneck. The procedure for starting .out As very
simple. We run along the list of jobs and assign each
to the first "available" appliant. Thus J1 is assigned
to A2, J2 to A3, J3 to A1, J4 to A6. (Note that A.. was

/-also qualified for J
4
buf is not available since he .has

already, been assigned'tp32.) Js to A4 Vince A2 \

y:

in thi case J8. This s done by writing the
label i at the bottom of column 8. We will
re er to J

8
as the 0-job.

,2) Label with a 1 n11 applicants who qualify for

the 0-job in.this case A3, A6, and A;.

To do this we look for circled pcisitions in

column 8 and place a 1 at the right end of

each row having a circle in column 8. These

will be called 1-rows and the corresponding

applicants 1-applicants.

Label with 1all jobs to which 1-applicants

have been'assigned. In this case the 1-
.

applicants A3, A6, and A7'have been assigned#

to 32, J4, and J7. Accordingly we wr4e
a 1 Wt the bottom of columns 2,4, and 7:

This is done by searching All .the 1 -rows

for checke,d positions and where we find

one we enter the label 1 at the bottom of

the corresponding column. The display with

the labels is now

16



4.0

Al

A
2

A
3

A
4

(4.4) A5

A6

A
7 °

A8

A
9

Ai0

44) ort

jls j2
J3

J4 Is
JJJ J
7 8 , 9 AO

0 0

0 0 0

0 0 ,0 0

0 0 0

0 0 ", 0 0

0 ' 0' . 0

0 0 0

0 0 0 0 0 2

0 0 , 0

0 . 0

1

0
.

1. . 1 1
.st
0

1

a

b

e

1

labels,

:4) This is like step (2). Look for all applicants

who Ualify for 1-jobs and if they are not already

labeled label them 2. In this case A6, A7, and

A8 qualify for the 1-job J2 but A6 and Ai have

already been labeled. However, A8 is not. yet

labeled so itgets the label 2, etc.: The'exact

.eVmputatignal procydur onCe.again is to look

for circled positions in the 1-columns and label

the corresponding rows with 2 provided they are

not already labeled.

5) We now make the important observation that in

labelling A8 we have labeled an applicant who

has not been previously assigned. When this

happeng we say that briakthroughJias occurred

and thili means that it is now possible to

find a reassignment which includes J8. The

method is the following: A3 has been labeled

9 0 17

.r

2. This means, he qualifies for 'ow: i-job,

in this case J
2'

J
4'

and J7. Ass hint to

one of these, say J2. Now J, is a1-Job

_which means it was previously assigned to some

1-applicant,-in this case We therefore

"unassign "A3 f4Lom J2. Finally A.; being a

1-applicant qualifies for the 0 -job J8 so he

is assigned to it, This gives -fhe new

assignment. The only changes, are A8 to1.12

and A3 to J8. The new display is then

Al

A
2

A
3

A
4

(4.5) A5

A
6

A
7

8

A
9

A
10

J1
J2 J3. J4 J5 J6 J7 J8 J9 J10

0
.

0'

0 0
%

0 0 , 0 d 0' 1

0 or

0 0 or 0

0
.

0 0 1

0 or 0 2

or 0 0 0 0 1

0, 0 or

.

0 0 ,

1 0 % 1

.

2 1 0

labels

1

-a

b
e

1

s

We now procAd with the assignments noting that J9

can be assigned to A9. On the other hand J10 cannot be

assigned, at least for the present, sine all qualified

applicants A3, A6, Ad A8 are already as igned to other

jobs. We proce.ed with the labeling m d (refer to

4.5 for the picture).

1) J10 gets the label O.
.

2) All appliants qualified for J10, namely A3,

A6, and A
8

get label 1..

"
43

18



3) The jobs assigned to 1- applicants. A
3'

A6, and

A8, namely J8, J4, and J2 get label 1.

4) All applicants-qualified for 1-jobs U2, J4,
and J8 not already labeled get label 2.

This turns out to be only A7.
.

5) All jobs assigned to 2-applicants, namely J7
get label 2.

6) %All applicants qualified for 2:jobs, namely
A3, A

7'
and A

8
and izrt already labeled get

label 3. But in tdis case all three applicants

arealreadyt-labeled, hence no applicant gets .

label 3 and the labeling procedure terminates.
Note also that breakthrough has not occurred
for the only unassigned applicant, A10, has

not been labeled, 'So we get no reassignment.

Instead hdtever, we get a bottleneck consisting

of the labeled jobs J2, J4, J7, J8, and Jio for

which only'the labeled applicants A3, A6, A7,

and A8 are qualified as one easily verifies

directly from the qualification matrix. We

list this bottleneck in the form (A A' A'3" 6' 7' e
A8; J2, J4, Ji, J8, J10). It follows that

there does not exist a complete assignment

for this matrix, and the problem is lolved

Let us now describe the labeling method in general
without reference to specific examples. We assume that
the first k jobs have been assigned so that there is a

checked positon in each of the first k,columns. Then,

Step 0 Label column k+1 with 0. Call this the

0-column.

Step 1 Look for all circles in theln-columnand

label the corresponding rows 1-rows. If

one of these rows contains no check-then

breakthrough has occurred. Check the

zf 19

circle in this row and thy 0-column. This

means that Jk.1 is now assigned. Otherwise
there will be exactly one checked position

in each 1-row.' Label the corresponding

column 1.

Step 2 Look for all circles in each 1-column and label

the corresponding row 2 provided it has not al-

ready been labeled. If break-through occurs

(i.e., a row with no check is labeled) a re-.

assignment including J10.1 is found according to

the method,of the example If not there is a

checked position in each 2-sow. Label the'

corresponding columns 2, and so on."'

.The procedure must terminate fn one. of two ways:

(A) either breakthrough occurs in which case one can

get a reassienment.including J10.1 by the method of the

preceeding example or (B) at some step the labeling,

terminates because all the new rows which are candidates
for a label have already been labeled. In this case,
the claim is that there must lie one more labeled cp/ume

than labeled rows/and the corresponding jobs and applicants
form a bottleneck: To see why this is so note that at

the end of each step there will be one more labeled
column than row. This is certainly true at step 0 since
there is one,P-column and no 0-row. From then on, at

each sthp as long as breakthrough does not occur we label
the same number of columns as rows, for each time_ we h

label a new`l!9w it must contain a checked, position (other-
wise we Would have breakthrough) and this_provides
new column with the same label. NoW AtS,labeling termi-
nates it means there are no new applicant% quajified for
the jobs already labeled, hence there is a shortage: of

one qualified applicant fr- the_labeled jobs";: Thisthen

provides the proof of the Main-Theorem as well-as a -
method for solving the .simpla.assignMent-prObleM.:



Exercises

14. For each of the following qualification

a complete assignment or a bottleneck.

list aset of r+1 jobs'fOr which there

applicants.

0 0
0 0 0

0 0

0 0

0 0 0 0 0

0 0

matrices find etther °

To specify a bottleneck

are only r qualified

15. \fe reproduce below the final 'display for the -example of this

section. The necessary labeling can be done righl on this

paper without having to 'recopy the display. Simply write in

with pencil the necessary checks And labels and then'erase

them before going on to the next part of the problem.

2

.3

4

5

6,

8

9

10

1 2. 3 4 5 6 7 8 9 100 0 0

0 0 0

0 '0 --' 0
1_

0 0

. 0 0

0 0

,0 0 0

0" 0./ 0

0 0 0 0
,

q
t 0 0

0 0
,

v
I.

0

t
%.-

a

b

e

labels

Can the above assignment be ,extended to acomPlete assignment

jf an additional circle is introduced (i), in position (1,1),

Oft in POis4Jon*(1,2), (i4i) in position 2,7)? In each case

either give the assignment or list the bottleneck.

21

16. Fill in the labels'fromt(4:5) in the display of the previou's

problem. Use the information they provide about bottlenecks

to prove that if, circles are added in any or all positions

of row 3 1C will still not be possible to make'a complete

assignment. Prove the same statement about column 1. Is

the statement true of any other rows and columns? WhiCh?

17. Give a brief argument proving the statement but not both"

of the Main Theorem.

18. In the problem of Exercise 15 there is a bottleneck

{A
3'

A'
6'

A7' A8' .J
2'

J
4' 7' 8.

J10 } meaning that there

are too few applicants for the given set of jobs. '-Show
. -

that there is. also a job-bottleneck by showing that A1,

A2, A.4;. A5, A8, and A10 are qualified only for J1, J3, J5,

J6, and J9 so that there are too few jobs for the given

set of applicants. Show that this will always be true,

i.e., that if a'problem has.an'applicant-bottleneck it

must"also have a job-bottleneck. For each case in Exercise.

15 where you 'found an applicant-bottlgneck find a jab-

bottleneck.

5. The Optimal AssignMent Algorithm

The method for solving the optimal assignment problem

is .now a matter of putting together the Material,of the

two previous section's. We wish to find wages wi and

profits P3 . for a given assignment matrix so that ikowill

have a profit maximizing'assignment, which by Theorem 2

wil4 then te optimal. We will find the desired constants

by,solving a sequence, of simple assignment problems.

We proceed at once to illustrate the method using the

third example' of Section 1. The idea is to start out

with.any set of wages wi and gradually change them unt
we get a profit-max assignment. A convenient starting

point is to-set all wages wi equal to zero. For the

example, the initial display is then

.22



profits

( 5 . 1 ) wages

10 7 Tie

0 8 4 3

0 9' 6 4

The procedure is now to ignore the numbers and try

to solve the simplelassignment problem given by the

circles in the above.display. In this case, of course,

the problem has no complete assignment since there are

no circles in rows 2 and 3. The bottleneck in this case

is obviouslin that there is only one applicant Al who

qualifies for the three jobs. Thus; there is a-severe

shortage of qualified labor a, in economiC terms, the

demand for qualified applicants is 3 since there are

three job openings-, whereas the supply of qualified

applicants As only 1 since Al is the only qualified

applicant. We now invoke the fundamental law of

economics, the famous taw of supply and demand, which

asserts-that if the demand for some good exceeds its

supply then its price will rise (and conversely if the

supply exceeds the demand the price will fall). For

our case this mean's that the wage w1 of Al must rise.

Suppose then w1 is increases," to 1. The hew display

is then

(5.2)

9 7

1

0 3

6 4

Notice that increasing w1 by.1 decreases p1, p2, and

p3 by 1 and-introduces a new circle in position (3,1).

We can describe the operation just performed by the

following: 23

Rule. If the simple assignment oroblem'has a

bottleneck,,inc'rease the wages wi of all Ai in

the bottleneck, (which will decrease the profits

all'jobs J in the bottleneck) by an amount

such that at least one new circle appears in the

display.

Let us continue applying the rule. The display

(5.2) again has no complete"assignment and it has the

obvious bottleneck.(A1, A3; Jl, J2, J3} since there is

no circle in row 2. According to the rule, therefore

we-shbuld increase uf and w3 and decrease pl, p2 and

p3 by 1 for when we do this a new circle appears in

-position (2,1).

8 6 5

. 0 0

0

labels

labels

In the display we now go through the labeling

process to locate'the bdttleneck {A1; J2, J3} so

according to our iule we again increase the wage w1

and lower p2 and p3 by 1 giving

(5.4)

tiv

ti

8 5 4

10

4 3

O 4

24



notice that the e is a new circle in position (3,2)
and also the old circle in position (1,1) has disappeared.
The checked positions now give the solution of the. simple

assignment problem (obtained by the labeling or any other
method) and this, by our conptruction, is a profit-max
hence an optimalpassignment.

In this procedure the greatest chance for error is

failing to fill the circles corb;....iy. The reader shoed
take special care after each application of the rule,

(A) to look for possible new circles which can

.occuronlyinpositions(i,j)whereJ.is
im the bottleneck and A. is not;

(B) to look for possible diaappearing.circles

which can occur only in positions (i,j)

whereA.1 is in the bottleneck and J. is
3not.

Remember that aij is circled precisely when aii =wi + pi.

The appearance and disappearance of the circles
has a natural economic meaning. A hew circle appeared

yin posidoh (3,2) above because it has now bedome

profit maximizing to hire A3 for Ji ih view of the

increased wage of A1. On the other hand the circle
in position (1,1) disappears because it is no longer

profit-maximizing to hire Al for J1 in view-of Al's
increased wage.

Let us now continue with the example, introducing
the applicant A4 with scores (2, 3, 5), and a dummy
job J4. We have

(5:5)

-

ss

__`57 10

o

5 4

4 3 0

1

2'

4 0

3 5 0

30 25

One.could, of course, start over again with this
4 x.4 problem. However, it is possible to take advantage
of the work already done on the 3 x 3 problem provided

one can choose suitable values for w4 and p4. A good
rule is to choose these numbers as small as possible

compatiblewiththefeagibilityconditionsw.+p > a .

This means that w4 = 1, for w4 < 1 would violate
w4 + p3 > a43, and--p4 = 0. This produces circles in
positions '(2,4) and

(5.6)
0"

wages .

1

1

profits

8 5 4 0

10 1) 10., o

qb 4 3 (0

el qi)v

2 3 0 , 0.

1 2 3 '0

labels

3

1

2

4

labels

We proceed ,to solve the new simple assignment problem
by the labeling method which this time leads to break-
through when'A4 is labeled, and we get the optimal
assignment [2, 4, 1, 3]. (The reader should Work through
the details.)

The problem has now been solved. There is however
one last important step which provides an independent
check on the correctness of the solution. First calculate
the-value of the assignment which is

(5.7) g + 0 + g/.+ 5/.=22.

Then compute the sum of all wages and profits which is
_ _

f5. (3 + 0 + 1 + 1) + (8 + 5 +-4 + 0) = 22. .

The reason that these.two numbers'are equal is clear
'because one only assigns on circled entries, that is,
on entries for which a = w. + p And since each ofij j 26

if



b

I

the numbers.i and j occur exactly once in a complete

assignment it follows that the sum of the checked a..
ij

is the same as the sum of the wi and pi. Finally, if
there is any doubt about the correctness of the answer
we should be sure that all the feasibility conditions
a.. < wi + p. are Satisfied.

As a final illustration we go through another

slightly larger example. The assignment matrix is

wages

Profitso

13 10 10 11 11

0 12 .9 to 8 @
0 6 .5 9

0
cp,

0 6

0 11

2 4 3 5

7

\

(The student in making these calculations should

definitely not recopy the assignment matrix at each

stage. He should always work with the original matrix

changingonlythewiaCd 0) .and adding or erasing circles

in going from one stage to the next.) The new display

shown above again has. the obvious bottlenock (Al, A9, A3,

As; J1, J2, J3, J4, J5) (since there are no circles in
row 4). Raising w1, w2, w3, w5 by 4.and lowerfIng all pi

by 4 brings in circles in position (4,3) and (,5) al
shown

wages

p;-ofitg

7 4 4 5 5

6 12 9 al 8 .10

4 8 6 6 5

6 al 0 0 11 11

0 6 20 3

6 11 9 0
and we have taken

display as shown.

The display"has

AS'
l'

J2, J3, J'
in rows 2 and 4.

w
3'

and w
5
by 2 and

a new circle in position

Wages

initial

4'
J5}

Applying

lower

wages to be 0 giving

the obvious bottleneck

since there are no

the rule we can

all profits by

(2,5).

Profits

the

(A1, A3,

circles

raise w1,

2 producing

27 11.

f one starts

(A ; J2, J4}

by 1 'and decreasing

f(A). produces.

and (4,1)

I
(B) removes

- I

wages

the labeling procedure the

becomes apparent at once.

pl, p2, and p4 by 1:,

new -circles 'at positions

circles at (3,3), and (3,5)

profits

6 2

7 1

0 3

6 4

bottleneck

'Increasing w3

(1,1), (1,2)

giving

labels

11 8 9

2 12 9 8

0 8 6 S O
2

CO to c)
0 6 2 4

2 11 7

6 3 4 .4 5'

0 R 0 8 1--

8 6 6 5 0
«10 10 1 I/ 11

2 0 e
ii 7 (3 9 0
2 1 3 0 3°

labels
28



137-- -

the ko.duc:fs:. t40- -tin_ - --:-dtplayigith no bottleneck and hence by The
-ess - Theorem ispl ay with a . c ompl et ass ignment

7 = Mut-- -
.74

-

22: N: -le :all- problems where you are a-sic1:1- to solve a numerical ---. ,
,

_ -i;rOb 1 etroir solutjn should present the final di splay with

I

and;ehecked al:14:cl rcleci entries 'of the matrlx,:-::.-: :-- - -f-'-
. -

6 . .Why---The Method l'io.1-4c5-- ---:. - --'.. --:^ . -...--- ,,,:---.....

-- _ _

--- I:- --.:-rj:--:::`.------,':-'-':-:;---_--- ---:- :\---...-. -.. .-_--- .----__ ..- InactUal'IY. maki.mi-the,c..a.-1..culariDne-tt;e student sho-uld workIt- the.e)csnip1-0$af- th:4:;.1)----rfca-pEli-iig_--OtTt--L-4n- it always:- , - - . - : , .

____-.
,-...--

sheets recopying only the. --,d d"-
turned out that 4fter-4--fi- te_hilnWercitsteVolVi4g_ . _

- , Final -display_ to hand -in.
increasipg various wages we-----airrlYid at

19. Find the optimal, assignmentment .for the--corrAvcling --sample aas71:gnItAfq -prt
_

hen N9ii--4m the r616,1

changing wages it is elear=thiit_.-af z-e-ac-h Stage, new _

circles will .6pear in tlit.:display-,-.:Nlitioyttilar.01

it may al o happen thtdct1 iaier : I
. - --

. is therefor at _least -C:a4-6-eii_ah:1"k t6t.;-circles

'

keep-
appearing an disappearing T.i2c-11--d -way- that there are

never enough of them to mAe--complgt-e-assigninf and

scr the algorithm will go on forever. To shOw-fliat

cannot occur we use a 'different approach.- Inste

trying to keep track of circles we -mak* use of the

feasibility condition .=

+ pi 2. aii for all positive (i,j).

At each stage of the calculation let

z = w + w2 + + wn +spi + p2 ... pn.
48,

Now at every stage of the calculation if a, compldte

assignment is not found we get a bottleneck which leads

us to raise r of the-wages wi by some amount and lower

at least r+1 of the profits by this same amount. This

means that tie number z will strictly decrease by. at

least 1 from one, stage to the next. 'On the other- hand,

by the;.-fehribillty -condition the value of z can never

be smaller than, for example, an a22 + t ann because

wl P1 > all' w2 p2 > a22.., wn + pn > ann. But

since z decreases every time the display contains a

bottleneck it follows that eventually we must get a

29

for the-matrix

6 5 2 0

2 0 0
.

2 2 a

3 0
0.

20.. Delow.is the final display for the example of Section 5.
Irisert the suitable circles and Checks in pencil without
referring back to Section 5.

4,

6 3 5

6. 12 9 10 8 11

6 6 5 9

7 13 10 10 11 11

0 6 2 3 5

6 11 7 10 9 11

,

Now a sixth applicant becomes available with ecores (5, 2,
5, 4, 6). Add this and a dummy job (in pencil) in the
display above and find the new optimal assignment. (Do

your calcolatioA on this sheet recopying only your final
display.)

21. Same as EXe-cise 20 except

are (4, 3, 5, 5,. 4).
the scores of the new applicant



22.\ Referring to the display of Exercise 20 prove withotit

making any calculations that if any or all une.ircle

els are increased by 1 the checked assignment will

remain optimal. Show that this is also true if any checked

entry is increased by any amount.

23. Referring to the same display increase the entry. in position'

(1,1)from12 t013.Aichnumberswior p. must be changed

to maintain feasibility? After making the change which new ,

circles appear? Which old ones disappear? Find the optimum

for this Altered problem.

24. Same as Exercise 23 except that

(i) ...the 9 in positron (1,2) is decreased to 8

(ii) the 6 in position (2,2) is increased to 8.

In each case do not start the problem all over from the

begirmingbudjustthegivenw.and.so as to restore

feasibility and go on from there.

25. Solve the optimal assignment problem whose matrix is given

below. Time yourself!

7 6 9 8 5 5 9 6-

8 8 8 8 6 7 "9 7

5 4 6 5 3 5 7 4

9 8 10 7 7 6 9 6

10 9 10 9 7 8 10 8

5 4 5 6 4 5 6 5

7 7 8 8 5 7 8 6

10 9 10 7 8 9 7

40100'

26. An asIditionalaPplicant with scores ( 1, 2, 3, 4, 5, 4, 3, 2)

becomes available. Starting from your solution to Exercise

25 obtain the new optimal assignment.

31

7. Answers *o Exercises

Section 1

1. n!

2. [1 2 3 4) has value 26.

44 3 2 1) has value 28.

[3 1 2 4) has value 27.

[2 3 .4 1) has value 27.

1

3. The checked assignment is [4 1 3 2] with value /7. The

circled entries do not constitute an assignment, since there

are two circled entries in row 3 (and no circled entries in

row 2).

Section 2

4. The.31 = 6 possible assignments, and their values are:

[1 2 3) = 9

(1 3 2] v = 8

[2 1 3]" 10
00

[2 3 1] v =

[3 1 2] v = 8

[3 2 1] v= 6

Therefore [2 1 3] is optimal.

5. Even if all is increased by 1, the optima) value will not

increase (although there will some new optimal assignments).

The value of the optimal assignment will increase if a12,
a21,

or a
33

is increased.

6. Likewise, a decrease in a12, a21, or a33 will leto a decreased

value of the optimal assignment.

7. Yes. Replace A2 with A4. The new matrix is:

4
1

J2

1

A
2

A
3

J
3

5

1 C) 0

2 . 2

and the assignment [1 2 3] has value 11.
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8. In this

9. Choose

case, no improved assignment is possible.

r 2(n-1). Form the following matrix:,

r r-1 r-2 r-3 r -n +l

r-1 r-2

r-n+1 r-n

For example, n ; 3, r = 4, and thematrix is

[4.
2

3

0

r-n

r-2n+2=0

Or, for n'- 5, r = 8and we get

4

7 6 5. 4-
6., 5 4 3

5' 4 3 2

4 3 2 1

3 2 1 0

1

In general, we hive a matrix in which each applicant
is best

qualified for job) and each job is done best by applicant 1.
Since in any astignmeht,

including the optimal assignment,
exactly one person does job 1 and applicant 1' does only oneleEr

job, we sp4 that only
one person does the job for which he is

most qu,41ifled and only one job is done by the most qualified
applicant.)

10. This Is -imtssible.

Section 3

4ti

or?

.

13 .

2

6 6 5

0 0
1 o or

®f
0

6 5

4

P.

wi 4 3 1 0

2 2 0

0 2 0

0 2 aY
0

Section 4

f4. (1) There is a bottleneck {A A J J J6).
2' 5' l' 3', 6

(ii) There is an assignment {6, 3, 5, I, 4, 2).

(iii) There is a bottleneck {A A A J J J J6).
1, 4' 6'

J1,
3' 4' 6

, 15. (i) No. There is still the bOttleneck {A A6, A'A J
3' 6' 7: 8'

J2,

J4, J7,j7' j13' J10 }.

(ii) Yes. An assignment now is {2,

(iii) Yes. One assignMent is {6, 7,

Another possibility is {6, 7,

16. We have the bottleneck {A A6, A'AJ J J J ).3' 6' 7' 8' 2' 4' 7' 8'
J
10

This means that, the only qualified applicants, for jobs 4, 7,

8, and 10 are applicants 3, 6, '7, and 8. This will still be

true even if applicant 3 becomes qualified for other jobs

(i.e. put 0's in row 3) so teere will be a.bottleneck and

no assignment. Likewise, even if other applicants become qual-
. ified for job 1 (i.e. - put 0's in column 1) the bottleneck

will remain. Aaditional 0's may be placed in rows 3, 6, 7 or 8

and in columns 1, 3, 5, 6 or 9, and the bottleneck will remain.

33 34',

1, 8, 5, 6, 4, 7, 10, 9, 3).

10, 5, I, 4, 8, 2, 9, 3).

8: 5, 1, 4, 2, 10, 9, 3).



f
a." slr

In general, 0's may be placed 'in labeled rows, or unlabeled

columns without affecting the bottleneck.

When breakthrough occurs, there are at least as many labeled

rows as labeled columns. When a bottleneck occurs;' there is

one more labeled column than labeled rows. Hence, both break-

through and a bottleneck cannot occur simultaneous
1
y.

18. One can simply verify from the marriZ the exiltence of the fob

bottleneck described. In general, suppose there is an appli-

cant bottleneck' where the only qualified applicants for some '

set of jobs J are the set, of applicants A, where J has one more

element than A. ThencOnsider the sets :land W, the comple-

ments of J an A.. Sir;ce the total number of applicants is

equal, to .thi.,total number of jobs, we have that A has one more

element Wan J. 'Moreover, the on19 jobs for which an appli-

cant fn A is qualified are in 1 (for if die applicant were

.qualified for a job in J, he would be in.A). Thus, the sets

LW; 711 form a job - bottleneck. Note we could also prove the

exIstenc of a job -.bottleneck by applying oyr algorithms o

the tran sed matrix. In # 1 i) and iii) we hi,ie.the

thg,.41ott bottlenecks:

i) A3, Ale, A6; J2, J4, J5).
iii) (A2, A3, A

5,
; J2, J

Secii

19.
4 3

CY 0
0

0 2

0 oi

0

OrO

$

40

v= 10

ti

35

20.

21.

5 2 4 3 5 -1

7 @ Di 10 9 -.1 1 0

4 8 0 6 5, (V (6

~8 O (3 10 (:) II o.

1 0., 2 4

:r 3
5

6 0 , 7 01 e 0

(1)(1 5 2 0 G) G)

6 -3 4 4 5 0

6 O2 O9
w

l0
8 ([) 1

$4 6 5 ar 0

7 .. E & tO 0E1 il 0

® 2 G 3 ® Of
6 ,i1 7 0/ 9 (ID. 0

I 4 3. 0
4

22. By the .feasibility conditons:

circled, then w, '+ p. .> ai.

circled entry in'poeIrtion (i,

and thus the feasibility condi

4.r,

V = 45

v=46

> a and if a
ij

is nOt

Hence, if 1 is added to an un-

j), we have wi + + 1

tioneare still satisfied for

these w. and pi.. Hence, the original

still Optimal.'

checked assignment is

Suppose the checked entry in row i is raised'by an amount A.
ow

d. > O. befinew.e,,,,,.4-di. sincewellaciw.4-1).-> a. then
s to . I ) J li

certainly w.* + p. > a.. Moreover; if entry (L, j) was,check-
; . 1 J li

....

edand;hadd.addedtoit,thenw.*+ p,. = a. + d.. That is, .

1 1 J -ii 1

th1,...14*and.satisfy the feasibility conditions, and thepj

(-)riliginal checked entries'will be circled. Since they form an

assignment, it is the optimal assignment.

4I
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23. Suppose
j

a.
s

is changed from 12 to 13. We could change w. froM

6 to 7 (and this would eliminate circles in the (1, 2) (1 ,3)

and (1, 5) positions) or we could change pi from 6 to 7 (which

would eliminate circles in the (3, 1) and 0, 1) positions).

The original solution is found to still be optimal, but 'there

are alternate optimal solutions now as well.
%

24.

25.

1. 6 2 4 3 5
t.

6 el ® 8 8
(E)

4 8 Oi 6 5 0
8 13 Of) 10 11 11

0 ® Oi 0 ®
11 7 0]) 0 (E0/

6

6 9

4 8 6

10 10

2

6 11

5

8

5

0

ol 11

3

26.

v =44 1

v = 46,

6 6 7 6 4 5 7 $

2 7 6 0 5 5 0 6

2 ® 8 0 0 0 0
0 5 4 6 5.; 0 01 4

3 Ol 8 0 7 0 6 9 6

3 10- sOl 0 0 0 0 0 0
5 4 5 (i) Gi 0 6

2 7 7 8 5 (j) 8 6

0 9 10 7 0 7

'42

v=62
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6 6 7 6 4 5 7 5 0
,

2

.

7 6 3" ® 5 5 0 6 0

2 ® 0 8 0 0 0 0 0/ 0

0 5 4 6 46 3 0 O 4 0)

3 cy` 8 8 ,7 0 6 , 9 6 0

3 lo D 0]) 0 0 Q ® 0

10/
0 5 4 5 ® ®® 6 0
2 7 7 8 5 0 8 6 0

4 0]) 9 18 7 0 07 7 0 0

1 1 2 3 .4 0/ 4 3 2 0



STUDENT FORM 1

Request for Help

a

Return
EDC/UMAP
55 Chapel St.
Newton, MA 02160

Student: If you have trouble with a specific part of this unit, please fill
out this form and take it to your instructor for assistance. The information
you give will help the author to revise the unit.

Your Name

Page

0 Upper'

(5Middle

0 ower

OR
Section

Paragraph

Descripti nsof Difficulty: (Please be specific)

OR

Unit No.

Model Exam
Problem No.

Text

'Problem No.

9'

Instructor:. Please indicate your resolution of the difficulty in thfsboic.

0 Corrected errors in materials. List corrections here:

0 Gave student better explanation, example, or procedure than inunit.
Give brief outline of your' addition here:

(:2) Assisted student in acquiring general learninLand problem-solving
skills (not using examples from this milt.)

Instructor's Signature

Please use reverse if necessary.



STUDENT FORM 2

Unit Questionnaire

Name Unit No. pate

Institution Course No.

Return to:
EDC/UMAP
55 Chapel St.
Newton, MA 02160

Check the choice for each question that comes, closest to your personal opinion.

1. How useful was the amount of detail in the unit?

Not enough detail to understand the unit
Unit would'have been clearer with more detail
Appropriate amount of detail
Unit was occasionally too detailed, but this was not distracting
Too much detail; I was often distracted

. How helpful were the problem answers?

.

Sample solutions were too brief; I could not do the intermediate steps
Sufficient information was given. to solVe the problems
Sample solutions were to detailed; I didn't needthem

3. Except for fulfilling the prerequisites, how much did you use other sources (for
example, instructor, friends, or other books) in order to understand the unit?

A Lot Somewhat A Little Not at all

4. How long was this unit in comparison to rhe'amount of timeyou generally spend on
a lesson (lecture and homework assignment) in a typical math or science course?

Much Somewhat About Sgmewhat 'Much'
Longer Longer the Same Shorter Shorter

5. Were any of the following parts of the unit confusing or distracting? (Check
as many'as apply.)

Prerequisites

Statement of skilli and concepts (objectives)
,/---7Paragraph headings

Examples.

Special Assistance Supplement (if present)
Other, please explain

ar

6. Were any'of the following parts of the unit particularly helpful? (Check as many
as apply.)

Prerequisites

Statement of skills and concepts (objectives)
Examples
Problems

I Paragraph headings
Table of Contents
Special Assistante Supplement (if present)
Other, pleav explain,.

Please describe anything in the unit, that you did not particularly like.

Please describe anything that you tound partitularly helpful. (Please use the back of
.this sheet if you need.smore space.

A
tA

.

.A.
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DIFFERENCE EQUATIONS WITH APPLICATIONS

1. INTRODUCTION

The main theme of difference equations is that of

recursion: computations perform

repeated manner. In fact, diffi

times referred to as recursion r

in a recurrent or .

rence equations are some-
.

lations. We begin by

looking at a familiar sequence from the viewpoint of

recursion.

The sequence of numbers {1,2,22,23,...,2n,...) is

a geometric progression iath geometric ratio 2. Each

term in this sequence, with'the exception of the initial

term, is obtained from its predecessor by multiplying the

predecessor by the number 2. If we introduce the notation
x
n

= 2n for n = then x
n+1 and x

n
are related

by the equation

(1.1) ,x10.1 = 2x

41w.

This relation by itself does not uniquely determine the

sequenceiander consideration because it does ma provide

Any information about the value of the initial term x0.

However, once the value

(1.2) x0 1

'

is specified, then the geometric progression is4Completely

determined because there- is a starting point (1..2) and a

rule (1.1) for calculating each term from the preceding

term. That is, be2 ginning with x. = 1, we get xl = 2x0 = 2,
then x

2
= 2x

1
= g , then x

3
= 2x

2
= 2 , and so-on.

Viewed in this manner, the above sequence is-,said to

be determined recursively because the C.alculation of a

particular term is done by a chain of calculations with

successive terms linked by (1.1). The relation (1.1) is

called a difference equation or a recursion relation. The

1

condition (1.2) is called ah initial condition or boundary
condition. By a solution to a difference equation is

meant a ormula for
1

x
n

such that xn marbe computed
dire ly without going through a chain of calculations.

In the above example,we started with,a given,

equence and then described it in the form of a difference

_equation and initial condition. In what follows, we shall

be concerned with the opposite problem. That is, we shall

be confronted with a difference equation and wish to solve

it in the sense of finding a formula that yields the n
th

term directly. to following famous sequence of numbers

first 'introduced in .t.h year f202 by the Italian mathe-

matician known as Fibonacci illustrates this problem.

Thessequence.of Fibonacci numbers is defined

recursively as follows. The first two Fibonacci numbers

aTe

(1.3) ' xo = 1, xi = 1,

and the xemaining numbers are prescribed by the equatiom

'0.4) x
n+2 xn+1 xn'

n = 0,1,2,....

Thus the nth Fibonacci number for n > 2 is obtained by

adding the two preceding Fibonacci numbers. The first ten

-Fibonacci numbers are therefore 1, 1, 2, 3, 5, 8,*13, 21,

34, 55. The formula that gives the nth term directly.is

by n6 means obvious. The solution will be derived later

after\ some techniques for solving difference equations

have been developed.

The difference equation (1.1) for the geometric
c,

,.... .,... progression is a first order equation sine, only, one term

ks needed to obtain the next term. The difference equation
(1.4) for the Fibonacci numbers is a second ordeY, equation

sAce two terms are needed to calculate the next term.

Both of these equations are linear since the terms ofthe

sequences are not multiplied together or raised to powers.

5



A general linear difference equation of order r

would have the form

.(1.5)
1 n+r 1

+ + crxn = fnOxn+r +

where the values fn are given along with the coefficients

co,c1,...,cr.. However, in the following discussion we

shall restrict' our attention to linear difference equations

of first and econd order. Examples illustrating how

difference eq ations arise in applications will also be
-

given

Ex46ises

1. For each of the following sequences, 'find a difference equation

and injtial condition that uniquely detei-mines the given

sequence.
1

a. 3,6,9,12,15, ..., 3n,

b. 3,9,27,81, ...,3n,

c. 2,5,9, 17, ...,2n+1,

2. Suppose x0 = 1 and xn+4 = 2xn+1 for n = 1,2,.... Find the

- values of xl,x24e.,x10.

3. Stippose an initial population of 6 wombats triples'each 2

years. Find the population at the end of 14 years:

4: Suppose the recursion relation x
n+2

= x
n+1

+ x
n

has initial

conditions x
0

= 7, x
1

= -4, Find the first ten terms.

difference equation as

(2.1) ' xn.1.1 bxn = gn

where b = -clic() and g
n

= fn/co. We are interested in

finding all solutions of (2.1) and in examining the role

Of initial conditions for these difference equations.

The assOciat'ed homogeneous differene equation is

(2.2) x
n+1

- bx
n

= O.

That is, gn = 0 for all n. If gn # 0 for some values of

n then Equation (2.1) is called nonhomogeneous. Equations

(2.1) And (2.2) are closely related. We firseconcen-

trate on the homogeneous case (2.2).

2.1 Homogeneous Equations

The homogeneous equation (2.2), which can be written

x
n+1

'= bx
n

, is easy to solve. Starting with the equation

corresponding to n =,0, we have

2. FIRST ORDER DIFFERENCE EQUATIONS

In this section we examine difference equations of

the form

coxn+1
clx.n fn

where c0,c1 are nonzero constants and (fn} is given. By

dividing by c0 and changing a sign, we c n rewrite this

3

te

net

52

x = bx .

0

-Next, x2 is obtained by substituting this expression for

k
1
into the equation for n = 1. That is',

x2 = bx1 = b(bx0) = b2x0.

Moving to the equation for n = 2, we get

x5 = bx2 = b(b2x0).= b3x0.

Continuing in this mannei;)we find

(2.3) bnx0, n = 0,1,2,....

This conclusion can be formally established by mathematical

induction if delired.

If we set x0 = C, then we have found that any solution-

of the linear homogeneous difference equation

(2,4) xn.,1 - bxn = 0

')
'4



has the form

(2,3) x
n

= Cbn, n = 0,1,2,....

This is refeired to as the general solzoi,dn of the

difference equation. Note that asolution'is not uniquely

determined unless a value of C = x
0
isspecified.

For example, the Onerartsolution of the homogeneous

difference equation x
n+1 n

= 0 is x
n
= CS

n where

C = x0. ,If the condition x0 = 2 is imposed, then we have

the solution x
n

2 Sn. On the other hand, if we are

told that x
3
= 750,then 750 i C 5 3

= 125C gives us

C = 6 so that the solution x
n

= 6- 5n results.

Example 2.1 (Compound interest). If aninttial amount of

matey P (for principal) is put into an account that bears

6 41-cent interest per year, thenat the end of one year

the total amount in the account-is P + 0.06P = 1.06P.

If interest is:compounded annually, then, this new amount

accrues interest during the second year.' Thus, at the

end of the second year the total amount in the account is

1.06P (0.'06)1.06P ; (r.06)
2
P, and so on.

The compounding gives rise to a difference equation

as followscz Let.x denote the amount An the account at
00 ,n

the end of the ntn year. The relation between xn+1 and

'x
n

is then

xn+1 = xn + (0.06)x
n

= 1.06xn.

That is, the new amount iS the old amount x
n

plus the

interest 0.06x
n

on that 'amount. In this situation, x
0

= P

is the initial amount'lp the account. This difference

equation has the form xn*1.- bin = 0 with b = 1.06:

Therefore, the amount inthe account at the end of the

n
th

year is

x
n

= (1.06)11P.

For a general rate of interest r, the amount is

5i

(2.6) x
n

= (l+r)
n
P.'

For example, if 200 .,dollars, is put into an account bearing

5 percent interest, then at the end of 10 years there will

be 6

X10 (1.05)10200 = 325.78'

dollars in the accout.f

In many accounts,, compounding is done several times

per year. Supposean account is advertised as having an

annual interest rate n compoundeds monthly. This means

that there are 12 i4terest,periods during the year and

compounding is bone each interest period aX an interest

rate r/12. The corresponding difference equation has the

same form, but now n refers to the number of interest'

periods and the rate of interest is r/12 instead of r.

For example, suppose D = 200 do1llars is put into an

account with interest r = 0.05 compounded monthly. Then

the monthly interest rate is r/12 = 0:00417 and at the,

end of 10 years there will have been 120 interest periods.

Thus, the account will contain

x120'= 1.00417120200

= 371.53.;\

dollars after 10 years.

Example 2.2 (Population growth). In a population of

animals,illsects, bacteria, and, so on, that has no dis-
turbances to retard population growth, it is reasonable

to assume that the rate at which the population grows

depends only onthe size of the population at any time;

That is, the.number capable of reproduction determines

the population rate. Stating this hypothesis precisely

leads to a difference-eViation. First, we consider the

size of the population during a'sequence of equal time

periods;-this may be Years, montiO, or minutes depending

on the nature'of the population. Now let x ilkbe th
ow. 6
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population at the beginning of the n th
trme period.

Then the change in size of t'he population during that

time period

assumed to b

*114.1 xn._,This population growth is

roportional to the population at the

beginning of thrlime period, that is,

x
n+1

- x
n

= ax
n

where a is a constant of proportionality. Thus, we have

a first order difference. equation

x
n+1 (1+a)x

n
= 0.

We see..that population grows under these assumptions

like money in a compound interest account. fn a sense:,

ignoring population retardants is like ignoring taxes.

The solution of, the difference eqdation is

(2,7) x
n

= (1+01113 n = 1:2,3,...

where P is the initial population. For example, if a

colony of 100 rabbits increases each month at a rate of

50_percent, then P = 100 and a = 0.50 so that at the end

of oneyear, the population will be

x
12

= (1.5)
12

100

= 12,974.

Exercises

1. Find the general solution, of the following;

a. x 0- 5)( .=
p+1

3x
n+1

= 2x
n

c.
xn+1 xn'

2. Solve thel.following:

0
a. xn.1.1 = 5xn, x0 = 1

b. 5Xn.1.1, + 3xn 0, x5 n 3:

(.1 u 7

4'

t

3. A sum of $1,000 is invested at 8 percent intere compounded

quarterly: When does the investment double.

4. A man in errt $1,000,000 at age 20, invests it at 6 percent

interest compounded annually, and spends 10 percent of the

amount each year. If he lives to be 70, how much will his

son inherit?

5. _ The population of a city increases by 25 percent each year

If the population was 100,000 in 1970, what was it in 1950?

6. Radium decays at the rate of 1 percent every 25 years. Let

r
n

be the amount of radium left after n of the 25-year periods

where_r
0

is the initial amount. Find a formula for r
n

. How

much is left after 100 years? How Jong does it take for: half

.of it to dec4?

2.2 Nonhomogeneous Equations

Let us turn to the nonhomogeneous difference

equation

(2.8)- xn -.bxn = gn

where the gn's may be nonzero. Instead of attempting a

direct iterative procedure as before, we shall examine

the relation between solutionsof this nonhomogeneous

equation and- the associated homogeneous equation:_

',,Suppose that {xn(h) }_ is any solution of the associated

homogeneous equation, so that

(2:9) x
n+1 (h) - bx

n
(h) = 0;

and suppose that {xn(P)} is one part.tular solution of the

'nonhomogeneous equation, so that

(2.10) An41(P) - lgn(!).. gn.

Addilig these two equations together and arranging terms

gives us



(2.11)
{x

(0] - bfx (h) + x (P)1 = g .L n n j

(h)

n+1 -+ X
n+1

This shows us that x
n
(h) + ir(P) is also a solution of

the nonhomogeneous equation. The interesting feature is
that every solution of the nonhomogeneous equation can be
obtained in this way.

To see this, let (x111 be the general solution of the
nonhomogeneous equatiOn, and let (x

n
(P)) be a particular

solution. That is, (xn(P)) is an explicit solution
containing no undetermined coefficient. A particular-
Solution can be thought of as corresponding to a specific
initial condition. 11' we now define {x

n
(h)} by setting

xn
(h)

x
= - xn n

(P)

we obtain

x
n+1 (h) - bx

n
(h) = [xn+i-xn+1(P) - b[x

n
-x

n
(P)] .

= [xn...1-bxn] [xn...,(P)-bx (P)1
n j

gn gn

= 0.

Therefore, {x
n
(h)

} is a solution of the associated homo-,
geneous equation. Hence,

(h) (P)(2.12) xn =
xn(h)

x

is the um of, the general solution of the associated
.homogeneous equation and a particular solution of the
nonhomogeneous equation.

Example 2.3. Solve the difference equation

xn+1 3xn 4

with initial.condition x0 = 5.

We first find the general solution, saving the
'tnitial condition for the end. The associated homogeneous
equation

9

.

x
n+1

+ 3x
n

= 0

has general solution x (11) = C(-3)n. Also, we see byn (:1
direct inspection that x

n = 1 is a particular solution
of`the nonhomogeneous equation because 1 + 3 =.4.
Therefore, by the above discussion, we conclude that the
general solution of the nonhomogeneous equation is

(h) (P)
,x

= x + Xn n n

= C(-3)n + 1. e

We now use the initial co dition x
0

= 2 to find the
appropriate value of th constant y, Since

= x0 = C(-3) + 1 ='C + 1

we obtain C = 4. Hence, the 'desired solution is
x
n = (-3)n + 4.

Thus the procedure for solving nonhomogeneous linear
-equations is as follows:

1. Find the general solution {xn(h)} of the
associated homogeneous equation.

2. Find a particular solution (xe)} of the non-
.homogeneous equation.

3. Add xn = xn (h)
+ x

n
(P) to get the general

solution {x
n } of the nonhomogeneous equation.

4. If there are initial conditions, use them to
find' appropriate values of the constants in
the general solution. rr

This procedure actually applies to any linecfr difference
equation. It wiAl be used later when we dicuss second
order linear difference equations.

The problem in living
nonhomogeneous equations thus

hinges on finding particular, solutions. There is no
-universal method fdr doing this, and if the giVen {gn}
is compricated, it can be a diffitult problem. However,

5-0 10



for cases of an elementary character, partichlar

solutions can be fouhd with relative ease. We"\first

onsider the case gn = a, a constant.

.2..3 The Equation xn+1 bx = a

The difference equation xn+1 - bxn = a where a is

a given Constant is easily solved. There are two cases

-to-consides:

(i) b = 1. It is readily checked that the equation

xn41 x
n

= a

has a particular solution in(p) = na since (n+l)a:- na = a.

The general solution of the homogeneous equation

xn = 0 is xn (h)
= C(1)n = C, a constant. Thus, the

. general solution is

(2.13) xn = C + na,
.

41;
v (ii) b # 1. We note that if {xn} is constant, then

the difference equation becomes simply a linear equation.

Thus, if xn(P) = x we have .
x '-''Vx'= a

and since b # 1,

Example 2.4. The Tower of Hanoi is a gUzzle consisting

of a board,with three pegs anORicircular rings of

decreasing size located on One of the pegs (see Figure 1)

The'problem is to transfer the rings to another peg by
- .

moving one ring at a time and never placing a ring on

top of a smaller ring.' The third peg can be-used as a

temporary resting 'place or 'rings during the tranger

process. We ask the question: How many moves are

required to accomplish the transferLleaving the relative

position of the rings unchanged?

(
.( ?

1 1

r i

Figure k The Tower of Hanoi.

,Let x
n denote the number of moves it takes to move

'n rings from one peg to another. Then
1

x-
n

'is related to

x
n

by the. recurrence relation

xn
(p)

- =
a

x 1-75. xn+i = 2)in + 1

because we can move n rings to the second i\eg in xn moves,

then transfer ring n+1 to the third peg'in one move, and

finally move the n rings from the second peg to the third
is peg in another xn moves. Hence, it takes

x
n

+.1 + = 2x
n

.+ 1 moves to transfer n+1 rings.

The general solution of the associated homogeneous equation

x bx = 0n+1
-

n

(h) = Cbn
n

In this case b = 2 and a = 1 so that.the general
Thus, the-general solution of the nonhomogenels bquation solution is
when b # 1 is .

(x4.14) x
n

= +
1715
a

'

xn un 1

= C2n - 1.

12



The initial condition xl = 1 yields C = 1. Thus, the

Toyer of Hanoi with n rings can be solved in xn = 2n - 1

moves.

Example 2.5 (Annuities). In Example 2.1, an initial

amount of money P wa4placed,i4an account that earned

interest compounded at regiAar intervals. In an annuity,
*-.!...,

equal amounts are deposited in the account at Bach

interest period so that the amount grows with additional

-.$)

deposits as well as accrued interest. 111,1 type of.

account is called an annuity and is ukall1handled by

insurance companies for retirement funds"", ` college expense

funds, and so on.

The growth of money in an annuity can be described

by a difference equation. Let xn be the amount in the

annuity after n interest periods, and suppoSe the same

amount P is deposited at the beginning of each interest

period. If the interest rate s r, then

xn = (previous amount) + (interest) + (deposit)

xn +rxn + P

= (l+r)xn + P.

Hence, we haveofth(Olifference equation

(2.15) xn (l+r)x
n
= P

with initial condition x0 = P.

From above, we see that the general solution is

xn = C(l+r)n +

= C(1+04 - P

Since x0 = P, we have R/r so that

C = P * = P (4E .

Thence have

62 13

(2.16) x
n

= P(121 (l+r)n - E-
r

(14011+1 1
P.

r

It is,common in annuities to set a goal and. then

. determi 'what deposit is needed to achieve the goal.

For e mple, suppose r = 0.08 compounded annually and we

wish o have $10,000 at the end of 20 years. What should

our annual depositP be? -If want x20 = 10,000 so we must

solve

(1.08)
21

- 1

0.08
P = 10,000

..Using a calculator, we find that

P = $192.32.

is

It is instructive to graph the solutions of

difference equations to get a feeling for the long-range

behavior of xn as n gets large. We shall do this for

the difference equation xn bxn = a. We know from

Equation (2.14) that the general solution when b # 1 is

ax .= Cb +
T-7-5'

If Ib) < 1, then b approaches zero as n gets.large.

Consequently, xn a/(1 b) as n co. This is illustrated

in Figure 2'where lines c nnecting successive values .of

x
n
have been drawn for visual, emphaMit We assumai4that

40 > a/(1-b) and b < 0 in the graph. If b > 0, th6 the

. values of xn simply decrease steadily instead of oscil-

lating as shown.

a

1 - b

_A

1 2 3 4 5

Figure 2. Ibl < 1 and b.< 0. 63
A

n

14,



If b -1, then xn simply oscillates between x0 and

-x
0
+a as shown in Figure 3.

If b > 1, then bn 4 as n 4 ...7'-and the graph would

steadily rise. If b < -1, then bn grows large in

absolute value, but alternates in sign. This case is

illustrated in Figure 4.

x0

-x
0
+a

a

1 - b

xn

1 % 2 3 4 5 6 7 8

Figure 3. b = -1.

n

Figure 4. b t -1.

Example 2.6 (The Cobweb Theorem'of Economics). In the

marketplace, the supply and demand of a product are

closely related to the price. A reasonable relation'in

-many cases is illustrated by the curves as showri'in

Figure 5. A rise in prices lowers consumer demand, but

increases supply since producers wish to take advantage

of theyj.gher price. however, a time lag occurs-as

pric6s and supply adjust to changes. Farm products such
15

C.1

supply
curve

demand

Figure 5.

quantity

as grain or hogs are good examples of lagged s,qaply

adjustments. A fall in pNce one year causes a farmer

to. cut..back-p-reduction the next year, and the decreased

supply then causes arise in price during the next year,.

and so On. Priceg' thus rise and fall-cyclically:

An elementary model using,difference equations can

be used to analyze the market stability of these lagged

-adjustments. Let pn and sn denote the price and supply,

respectively, of a product in the nth year. We assume

(2.17)
pn

a - bs
n'

where a > 0, b > 0, since a large supply causes a low

price in a given year. Similarly,, we assume that price

and supply in alternate years" are proportional, so that

the lagged adjustment is given by

(2.18) pn = ksn+1

where k is a positive constant of...proportionality. If

we concentrate on price, we can combine these two rela-

tionships to get a difference equation for the price:

pn+1 =sa - bsn+1

= 412111-).

Thus, we obtain

.(2.19) b
Prt+1 kPn = a'

16



As shown above, but with coefficient -b/k instead of
'b, the solution of this difference equation given by

(2.20) pn = C(-On
1 + (b/k)

b n a+k

The long-range behavior of the price thus depends on the,
size of b/k.

.

, 2, the cobweb is reduced to a rectangle that is retraced- .

ak over the years.
.Case 1. If b/k < 1,'then pn -,- k as n -4- co and i

the market price tends to stabilize. Price varia- - '
.

Exercises .,tion is shown by the -graph in Figure 2 on'page 14.
I. For each of the following, find the general solution and then

Case-2. If b/k = 1, then pn oscillates between pi:) the solution satisfying the stated initial cor7dition.

and -p0 + a,. so the market is unstable. See Figure a. 4x,14.1 - 5xn =0, x0 = 5
3 on page 15.

s'

The suggestive appearance of these pictures it the reason
that the above analysis is refefred to as the Cobweb
Theorem in economics. Note that b and k are the slopes
of. the demand and supply curves., Thus,-if supply
adjusts more radically than demand to pTice changes,

then the market will tend to stabilize (case 1). The

reverse situation leads to instability (case 3). In case

Case 3. If b/k > 1, then the oscillattomi of p
nr

become larger and larger. The market is unstable,

but.the model fails when the price becomes \negative..
See the graph in Figure 4 on page 15.

The lagged adjustments can be displayed dramatically
by plotting the changes on the supply and demand curves.

We illustrate cases 1 and 3 in Figure 6.

supply
curve_

supply
curve

deman
curve

quantity

ase 1 (Stable). <1.

Figure 6.

e

as

quantity

Alesema..4pnstable).
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b. x
n+1

+ x
n

= 7, x
0

= 1 ,

c. . 2x
\11+1

- x
n
= 4

0
x
0

= 1.

2. Starting at the day of birth, parents 'deposit .$509 per year

at 6 percent interest compounded,annually. How much is in the

account when the child turns 19 years old?

3. In 1626, Peter Minuit of the New Netherlands province

purchased Manhattan Island for goods worth $24. If this

amount had been invested at 7 percent compounded quarterly,

find the value of the investment, in 1976. (The amount,- approxi-

mately 850 billion dollars, is more than Manhattan is worth

today.)

4. (Amdrtization\of loans.) Suppose an amount L is borrowed and

is to be paid in equal installments such that each payment is

to include interest on the unpaid balance. That is,

.

new balance = old balance + interest - payment.

SupPose',the annual interest rater is compounded monthly (i.e.,

?/12 per month) and the monthly payment is P. Find a formula

for B
n'

the balance after n Oayments.

18
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5. Apply the result of Exercise 4 to a house mortgage of $30,000

at interest rate r = 0.10 to be paid in 20 years. What must

the monthly payment P be? How much i 's paid over the

20 years?

6. Suppose that the interest rate on a mortgage is 10 percent

compounded monthly. If you can afford to pay $300 per month

for 30 years, how much money can you borrow? (Estimate 1. so

that
360

, 0.)

7. (Pizza slicing.) Show-that n distinct straight lines in a

plane that all pass through a common point divide the plane

into 2n regions.

8. Suppose that the current price oroats is $1.25 per bushel

and that the price pn of oats n years from now satisfies

Pn+1 + 0.6pn = 1.6. Sketch the graph (7t pn.

2.4 The Method of Undetermined Coefficients

The "method of undetermined coefficients" is a

method of findplg a particular solution of a nonhomogeneous

difIerenceopation

(2.21) xn.1.1 - bxn = gn

by imitating the form of gn. If-gwhas a simple form, the

method is often successful. We shall illustrate the

method with a few exampys_.

Example 2.7. \ (1) Find a particular solution of the

equation a

(2.22) xn4.1 + 2xn = 3n + 4.

Because gn = 3n + 4, we attempt a 'solution x'n(P) = An + B

where-the coefficients A and B are to be determined. This

is done by putting it into ''tquation'(2.22) as follows:

(A(n +I) + 13) +'2(An + 13) = 3n + 4.

Collecting terms, we get

3An + A = 3n + 4.

1.1 -J

4

19

This should he lalid for''each Ialue of n, so that

n = 0: A-+ 3B = 4

n= 1: 4.\ + 3B = 7.

I

Sorting for A and B, t.e obtain A = 1 and B = 1. Hence,

xn (p) n+) is a particular solution of (2.22).

(2)' To find a particuljr solution of the difference,

equation

,n
=

Kri+1 n

we try x
n

(I)) = A2n. Then

n+1 n nA2 ,)(2 ) = 2

so that A = 2. Hence,

(p) 2(,n) = 2
ti+1

Difficulties can arise if the given ignl has the

same forM as the solution oi the associated homogeneous

equation. However, multiplication by n can often resolve

the problem as the following example illustrates.

Examille 2.8. (1) A particulz;i solution of the difference

equation

n
x
n+1

2x
n

= 2

cannot have the form A2n since this is a solution of the

associatote homogeneous equation. We try xn(P) = An2n. """'

Substitution yields

A(n+1)2n+1 - 2An2n = 2n
A

so that A = 1. Thus, x
n
(P) = n2n,is a paiticular solution.

(2) for the equation xn.1.1 xn = n the attempt

x (P) = An + B fails. Multiplying by n, we try

x
n
(P) = An2 + Bn. This leads to the condition

2An + A + B = n, so that A = 1/2, B = -1/2.

t

ti .3 20
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Exercises

j. Find the general solution and then the solution that satisfies

the given initial condition.

a.
xn+1.-

5xn 7 3n, xo = 1

b. xn+l + xn = xo = 1

2x
n+1

- x
n e

= 2nr
'

x
0
= 2 .

a, xn..0 7 Xn = n2n, xo = 1,

2. Suppose n'straight lines are drawn in a plane so that no two

lines are parallel and no more '''than two lines intersect at any

point. Let x
n

be the number of different regions determined

by the lines._ Find and solve a difference equation to derive

a formula for x
n

. Note that x = 1.

3. An empty lake is stocked with fish by putting in 100 fish the

first year, 200 fish the second year, and so on. Through

reproduction the number of fish increases by 50 percent each

year. How many fish will there ,be after n years?

3. SECOND ORDER LINEAR DIFRERENCE EQUATIONS

We now consider equations of the form

(3.1) x
n+2 + axn4.1\+ bx

n
= gnu

The associated homogeneous equation is

(3.2) x
n+2 + axn + bx

n
=-0.

The relationship between solutions of the Equation (3.1)

and the associated Equation (3.2) is the same as for first

order equations.

*

That is, if {x
n
(h)

} js the general solution of the

homogeneous Equation (3.2) and if {xn(P)} is a particular

solution of the Equation (3.1), then the general solution

21

q,

of (3.1) is given by

(h) (p)x = x + X
n

Thus, adding a particular solution of the nonhomogeneous

_equation to the general solution of the associated

homogeneous equation yields the general solution of the

nonhomogeneous equation. The verification is the same

as in the first order case.

3.1 Homogeneous Equations

Before developing techniques to solve homogeneous

equations of the form (3.2), we make some preliminary

observations. First-, if {un} and {vn) are each solutions

of Equation (3.2) and if C1 and C2 are constants, then

(3.3) xn = Clun + C2vn

is again a solution of Equation (3.2). This is directly

verified by substituting (3.3) into Equation (3.2) as

follows:

(Clun+2+C2vn+2) + a(C1un+1+C2vn+1) + b(c1un+c2vn)

dc
: .,

= 0n4-2 +au
n+1+bun) + C2(vn +avn

+l +bvn)

= C
1

0 + C
2

0

= 0.

The zeros result from the hypothesis that {un} and {vn}

leach satisfy Equation (3.2).

Thus, if two different solutions can be found', they

can be combined as in (3.3) above to yield other solu-

tions. We next observe that two different solutions are

actually needed to generate the general solution.{xn).

It is possible to express any xn in terms of x0 and xl

by successive calculations. For n = 0, Equation (t.2)

gives

x
2
= -ax

1
- bx

0'

7
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and n = 1 yields

-x3 -ax bx
.) 2 1

= -a(-axi-bx0) - bxl

= (a--b)x +Cbx
1 0'

For n = 2 we g-e-t after simplification that

x4 = (2abra3)xl + (b2-a2ub)x,.

Proceeding in this manner, We see that the value of xn is

uniquely determined by specifying values of the inktial

terms x
0

and xl.

This iteration process does not lead to a useful

formula in general, and without a computer it is tedious

and not practical.. However, if we set C1 = x0 and C2 = xl,

then this can be used to show that the general form of

'solution of the homogeneous equation (3.2) is

xn = C
1
un + c2vn

where u
n

and v
n are determined by the coefficients a and

b as indicated above. It can also be shown that tun) and

{v
n } are themselves solutions of the homogeneous equation.

In summary, the general solution oT the homogeneous

equation

(3.4) xn+, +. ax,4,1 + bxn = 0
"

is of the form.--

(3.5) xn = C
1
un + C

2
vn

where C
1,

C
2
are arbitary constants and {u

n
{v

n
} are

distinct solutions of the equation.

Exercises

1. Verify.by direct substitution that un = 2n and vn = n2n are

both solutions of %

144 23

xn+2 - 4xn+1 + 4xn = 0

so that the general solution is

x
n

= C 2n + C
2
n2n.

2. Find the'solution of Exercise 1 that is determined by the

initial conditions x0 = I and xl = 2

3 Show how the conditions x2 = 16 and x5 = 32 for Exercise I

lead to a system of equations in CI and C2. Solve for CI and

C2, and thereby find the solution satisfying these conditions.

3.2 The Auxiliary Equation

We seek solutions of the homogeneous difference

equation

(3.6) xn+2 + axn + bxri = 0.

Since first order equations have solutions of the form

xn = A n,
a geometric progression, let us see if similar

solutions exist for second order equations where A will

be a constant involving the coefficients a and b.

Substituting xn = An into the-difference equation, we

get,

(3.7)
n+2

+ aA
11+1

+ bA
n

=

el"h*
Rejecting the trivial zero solution, we assume A # 0.

Then can1Eelling An in the preceding equation, we get

A
2
+ as + b = 0.

This quadratic in A is called the auxiliary equation oX

the difference equation (3.6).
4

Applying the quadratic formula, we obtain the roots

(3.8) -a + a2 - 4b -a - )a-2--711;
Al = 2 A2 2

The general solution of the difference equation depends

on the nature of these roots. Three cases arise:
24



&
(i) Ai and A2 are'real and unequal(a2 - 4b > 0)

,
1 + 15 1=C . , C
215

, 2/5(ii) Ai and A2 are real and-equal (a 2 -4b = 0)
th

1.

Hence, the formula for the n ,Fibonacci number is
.

(iii) Al and A2 are complex conjugates (a 2 -4b < 0).

Case (i). If AI and A2 arereal and Al # A'i,"then

the general solution of thehomogeneous difference equa-
tion (3.6) is

(3.9) An = CiA1,11 + C2A2n.

1 (1 15111+1 1 (1 - /Sr +1

1* /3-

This may be a somewhat surprising formula in view of the
fact that x

n is a positive integer for every n.

Z,

`Case (ii). If Al 2 A2 -7, then the general solu-
Since Al aid A2 satisfy the auxiliary equation, we tion of the difference equation (3.2) is

\
t

see that u = Ai
n
and v = A2

n
are two distinct solutions

. (3.11) xn = (C1 + nC21--1- n.of the difference equation. 'Thus, according to the dis-

cussion in the preceding section, the general solution
In this case, the auxiliary equation is (A+a/2)-

2
-= 0,is x

n
= C

1
u
n

+ C
2
v
n: This gives us the stated solution.;

which has only one root. We obtain one solution,
Exam le 3.1. We are now in a position to derivte a formula
for the ibonacci numbers. The Fibonacci numbers (xn)
satisfy the difference equation

x
n+2 x

n
= 0

with initial conditions'xj = 1, xl = 1. The auxiliary
equation A2 - A 1 = 0 has solutions

1 + 15 1 /S.A =
1 2 '

Hence, the difference equation has general solution

xn = C1(,r--1 +
+ C2 r

.

We know apply the initial conditions to find the valdes of
C1 and C2. The conditions x0= 1 and xl 7 1 lead to a
system of two equations:

(3.10)

(3.12) un =
l-

to the difference equation, 4put we need a second solution
in order to obtain the general solution. This is done by
multiplying our one solution by n;"that is, we let

(3.13) vn = nun.

Direct substitution verifies'this is in fact a solution.
Thus, the general solution is

xn = Clun + C2nun = (C1 + nC2)un,

as Stated in Equation (3.11).

Example 3.2. Suppose gamblers A'and B play a game of
matching pennies where A03 start the game with NA,NB
pennies, respectively. The game ends when one player has
lost all of his pennies. We assume the coins are fair soC1 4- C2 = xo = 1
that each player has pi-Obabiiity 1/2 of winning on each

11.1.211. cr+ (2.-L2Z+.2 = play. What is the probability t\iat A will win all the
pennies?

Solving Zhis system, we get
Let P

n be the probability that if A has n pennies,
25 then A will win the game: Let N = NA + NB. Clearly,

26
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Po = 0 and PN = 1. Consider a valuealue of n such that A
/lb a2

1has n+Lpennies and 0 r = 13n+1 < N. After one play, A will and tan o
a

have either'n+2 pennies or npennies, depending on
The derivation of this solution requires some

whether A wins or loses on that play. Therefore,
familia'rlty with complex numbers. If a2 4b < 0, then

1 1 the auxiliary equation A" + as + b = 0 has complex roots
Pn+1 .5-Pn+' 4' .-Trin'

Hence, we have the difference equation

P
n+2

2 Pn+1 + Pn = O.

The auxiliary equation

A =
a a- a /4b - al

1
+

2

These can be written in polar form

1
= r(cos 0 + i sin 0)

A2 -2X + 1 = 0 A2 = r(cos 0 'sine)

has roots Al = A, = 1, so that the general solution is
where r is the modulus r = IX1! = IA21 = F and 0 is the

Pn CI C2n'
argument of Al as given above. ,Then DeMoivre's Theorem

gives us *\

Since Po = 0, we got ci = 0, so that Pn = C2n. Also,

1 = PN = C2N, so that C2 = 1/N. Hence, the desired

.probabilities are

P
n NA=

n

B'
0 < n < NA + N

B.+

The probability that A will win starting with NA pennies

is therefore

X In rn (cos n + isinn AO'

X2
n

= r
n (cosn Psinn0).

These are complex solutions/to the difference equation,

but we wish to have real solutions. This is done by

taking real and imaginary parts. Setting

N
A #

un = + ) = rn cos n 0

P
N
A

NA + N
B

We conclude that it is unwise to p]ay an even game against

an opponent with greater resources. For example, if A

starts with 10 pennies and B starts with 90 pennies, then

the probability that A will win is only 1/10.

Case (iii). If Al and A2 are complex, then the

general solution of the homogeneous difference equation

(3.6) is

(3.14) xn = rn(C1 col n 0 + C2 sin n 0)

where r and 0 are given by
J 27

vn 2W, 1
A2 n ) = r

n
sin n 0,

1 (

we see that un and/irn are, solutions because Ai
n

and X2
n

are solutions. The generhl real solution is thus given

by xn = Ciun + C4vn as stated in Equation (3.14).

Example 3.3, the difference equation

- 2xn41 + 2xn = 0

has auxiliary equation:

A2
\

+ 2 = 0

4
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with roots

Xi = 1 + i = i2(cos°4 + i sin i)

12 = 1 i = T(cos - i sin i).

Therefore, the general solution of the difference equation
is given by

xn = 2n/2 (CI cos + C2 sin

If we also have an initial condition, say x0 = 5, xi = 2,
then C

1
= and C

1
+ C2 = 2 so that the solution is

1
J

x
n.

= 2n/2(5 cos
non-

3 sin nl
4

3.3 Nonhomogeneous Equations

We'now turn to the nonhomogeneous equation

(3.15) xn+2 + axn.1.1 + bxn = fn.

A4 with first order linear equations, if we add any .

particular solution of (3.15) to the general solution of

Ihe-associated homogeneous equation,, the sum will be. the
general solution of the nonhomogeneous equation. Thus,

we wish to determine a particular solution of (3.15).
. The form of a particular solution can often be inferred.
from the nature of the givenfn and this leads to the
method of undetermined coefficients. It i$ essentially

the same approach as used in the first order case. We

illustrate the method with the following example.

Example 3.4. Consider the difference equation

(3.16) xn+z - 3x
n+1

+ 2x.11 = kn

1

where kis some constant. Fhe auxiliary equation

7 , 2 \ 3 X + 2 = 0

29

,._}has
roots X

1
1 and

2
= 2, so .that the corresponding'

homogeneous equatioU has general solution {C1 + C2211}.

Asan attempt to find a particular solution, let is
try xn (p)

Akn where the coefficient A is to be determined.
Substitution into 'the difference equation yields

Akn(k-1)(k-2) = kn

for all n, so that A must satisfy

A(k-1)(k-2) = 1.

If k # 1, k # 2, then we see that

1A
(k-1)(k-2)

1
For example, if k = 3, then A = 2-, so that xn(!) = 13n is
a particular solution and

c22n 1.3n

is the general solution of the nonhomogeneous equation.

However, if k = 1 or k that is, if k equals
either of the roots of the auxiliary equation, then no
value of A satisfies the required condition. This is not
at all surprising because these values of k yield solu-
tions of the homogeneous equation and therefore could
not very well produce solutions of the nonhomogeneous
equation. Consequently, the form of particular solutions
must be modified for k = 1 and k = 2. The appropriate
modification is to multiply the related solution of the

4homogeneous equation by n. Let us look at the two cases
separately.

If k = L, then the difference equation (3.16)
becomes

-(3.17) xn..2 - 3x
n+1

+ 2x
n

= 1.

Since X
1
= 1 is a root of the auxiliary equation, we

know the constant sequence xn = 1 is a solution of the

homogeneous equation and therefore x
n
(P) = A is not a

30



partilular solution of the nonhomogeneous equation. But

if we multiply by n an,d try xn(P) = An we shall succeed.

Substituting this into the diffe.rence equation, we get

A(n+2) - 3A(n +l) + 2An = 1

,.

so that A = -1. Hence, xn(P) = -n gives us a particular

solution.

If k = 2, the difference equation (3.16) becomes

(3.18) x
n+2

3x
n+1

+ 2x
n

= 2n.

Now x
n

= 2P is a solution of the homogeneouso'equation, so

we try xn(P) = An2n as the form of,a-particular solution

of the nonhomogeneous equation .(3.18). Then we get ,

A(n+2)2"2 3A(n+1)2n+1 + 2An2
n

= 2
n

so that

4A(n+2) - 6A(n+1) + 2An = 1

and hence A = 1/2. Thus, x
n
(P) = n2n-1 gives us a-par-

ticular solution of (3,18),

Exercises

I. Find the general- solution and then the solution that satisfies

x
0

1,= 1 x 1 = 1.

a. x
n+2

- x
n

= 0

b.

'c.

xn+2+ x
I

xn = : 0

xn+2 2xn+1,...4%0 0,1*

d. -x
n+2

+ xn

2. Find the general solution and then the solution that satisfies

x0 = 1, xi = I.

a, rit+2 - 5x n+1 + 6x
n
= 2

b. x
p+2

4x
n+; .

+ 3x n'= 2

8)
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c. xn+2 4xn+1 4. 4, = 3n 2n

d. xn+2 + x
n
= sin 12 I.

3. Consider a telegrbphy system in which the symbols that can be

transmitted are dots, of 1-second duration, and dashes, of

2-seconds duration. Let x_ represent the number of distinct

messages of duration n seconds. Fi-ad a difference equation

for xn and so determine a. formula for x
n

. Note that xi = I

(one dot) and x2 = 2 (two dots or one dash).

4. Suppoie\the inimase of a fish Population each year is twice

the increase of the previous year. If initially there are

1,000 fish, and if there are 1,100 the following year, find

the population in then61 year.

5.
P

In the preceding problem, suppose 100 fish are removed'each

year. Find the population in the n
th

year.

4. ANSWERS TO EXERCISES

Section 1, page 3

la. xn.1.1 xri = 3, xo = 3.

b.
xn+1 3xn' x0 3.

c. xn.1.1 - xn =2"

2- 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047.

3 576.

4. 7; -4, 3, -1, 2, 1, 3, 4, 7, 11.

Section 2.1, pp. 7-8

la. x
n
= C5".

b. x
n

= C(2/3)n.

c. x
n

= C.

.0*
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2a. x
n

5n.

, b. x
n
= 3(-3/5)n-5.

3 Solve (1.02)n.= 2 for n = 35 quarters; 8.75 years.

4. xn+, = (1 + 0.06 - 0.1)xn = 0.96xn, x0 = 10
6

.

5. 405.

6. r
n

= r
0 (0.99)n, r4 ti 0.96r0, 1724 years.

Section 2.3, pp. 1409

Ia. xn .= 1(23 5 - 3)

11,;_on+1 4.7).
2Vb. xn

c. x
n

= -3(1/2)n + 4.

t

18,393.

As

Section 3.1, page 23-24

2. x
n

= 2n - n2n-2.

(C1 + 2C2 = 4

3.

C + 5C
2

--.- 1

CI = 6, C2 = -1.

Section 3.31 pP. 31-32

la. xn = CI + C2 (-1)n, x
n
= 1.

b. xn_= C12n + C2(-3)n, ..102n+2

c. xn = (C1 + C2n)(-1)n, xn = (1-2n)(-1)n,

d. xhr CI cos (-.) + C2 sin,
I nn nn., xn = cos [-i-) + sin

-
2a. x. = Cl3n + C22n + I; CI = -2, C2 = 2.

11. 848000,000,000.

8 ,. L leElli + rIn .1. EP. . b, . x
n

...,C, + ;,?:7 7 n; ti = 3/2, C2 = 1/2. .

n ` , r" 11% '

5. P : 290; Interest ='240 290 - 30,000 = 39,600. c. x
n

= (C1 + nC2)2
1

n
n22n-3

+ 6; C1 = 1p, C2 = -118.
i

6. .37,815.

d. x
n = C1 cos tiq + C2 sin n7r).

1 (7 ' C1 = 1; C2 = -1/2. '7. x -,x = 2, x = 2 has solution x = 2n.n+1 n 1 %

(f

3. x .. x
n+2 n+1

+ xn, the Fibonacci numbers..
Section 2.4-i-1/age 21

la. . xn = C5n - in - -124%. If xc; = 1, then C = Tb x
n

=

'

900 + 100 2n,
19

%
4 .

b. i
n
.= C(1)n + 2n2 - 2n. If x

0
... 1

'

5 1000 + 100n.tAen C = 1.
1

c. x
n
= C(1/2)n + 2n-1.: If x0 = 2, then C = 3/2,

,..

d. x
n
= (n-2)2n. If x

a.
= 1, then C = 3.-

I2. x
n+1

a x
n

+ n + 1, x = 1, has solution x
n

-(n
2
+n+2).'

2

i x
n+1 to =100(n+1), x

0.
0, has soluttim

x
n
= 600(3/2)n - 200n - 600.

s- 33
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EDCVUMAP

55 Chapel St.
Newton, MA 02160

Student: If you have trouble with a specific part of this unit, please fill
out this form and Luke it to your instructor for assistance. The 'information
you,givd will'help the author Ito revise the unit.

Your Name
Unit No.

OR

Difficulty:

OR

Page

Section Model Exam
Problem No.Upper

()Middle

0 Lower

Paragraph Text
Problem No.

Description of (Please specific)-

Instructor: Please indicate your resolution of the difficulty in this box.

0 Corrected errors in materials. List corrections here:

OGave student better explanation, example, or procedure than in unit.
Give brief outline of your addition h4e:

,+
(2)

Assisted student il ttacquiring geeral learning and problem-solving
skills (not usirfg examples from this unit.)

tJ r

Instructor's Signature

Please use reverse if necessary.
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Institution 6)urse No.

Return to:
EDC/UMAP
55 Chapel.St.

Newton, MA 02160

Check the choice for each q estion that comes closest to your personal opinion.

1. , How useful was the amoun of detail in the unit?

Not enough detgil to understand the unit
Unit would'have been clearer with more detail
Appropriate amount of detail,
Unit was occasionally too detailed, but this was not distracting
Too much detail; I was often distracted

2. -How helpful were the problem answers'

Sample solutions were too brief; I could not do theeintermediate steps
Sufficient information was given to solve the problems
Sample solutions were too detailed; I didn't need them 0 , , .116

P

3. Except for fulfillin& the_prereguisites, how much did you use other sources (for
example, instructor, friends, oil other books) in order to understand the unit?

A Lot Somewhat A Little. Not at all

4. How long was "this_unit in comparison to the amount of time you generally spend on
a lesson (lecture and homework assignment) in a typigapimath or science course?

Much Somewhat About Somewhat , Much
Longer Longer the Same Shorter Shorter

5. Were any of the following parts of the unit confusing or distracting? (Check
as many as apply.)

Prerequisites
Statement of skills and concepts (Objectives)
Paragraph headings
Examp1.1=-

Special Assistance Supplement (if present)
Other, please explain

1

4
.

6. Were any of the following parts of the unit particularly helpful? (Check as many
as apply.) .

Prerequisites .

Statement of skilld anusl concepts Objectives)
Examples

i

.

. Problems-

Paragraph.headangs
Table of Contents - _

Special Assistance Supplement fpresent)
,

q

Other, please.explain t

. . , ..--' Th..............

I .

, Please describe any hing in tie .unit that you did na particularly like.
.

1
.. .

. .

" Please describe anything that you found particularly helpful. (Please use the back of
thissheet if you need more space.)
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SELECTED APPLICATIONS OF MATHEMATICS

IN FINANCE AND INVESTMENT
k

\
.

1. R &VIEW'OF INTEREST CALCULATIONS;

THE DEFINITION OF "e"; CONTINUOUS GROWTH

It is impossible to do any interesting or significant
problems in the theory of finance without understanding
continuous compounding of interest and, more generally,

continuous increase in\value with constant percentage

growth rate.

First,we review some useful terminology. We should
make clear the difference between interest and interest
rate: Interest is an actual sum of money, paid by 'a bor-

rower to a lender for the privilege of havingheld a loan.

Generally the longer the borrower has the loan, the igher
an amount of interest he must pay. The interest rat is

\ an expression of an amount of money 1,gr time period,

usually per year, and it specifies how the interest itself
is to be calculated at.tle end of any particular period of
time. For example, a lender may say,that on aloan of
$3,000 the interest rate is $25 per month, which could also /
be expressed as $300 per year. This number in effect

determines a'rule for calculating the interest at any time,

e.g., after three months the:interest is $75, after two

years the interest is $600, etc.

Interest rates re normally; expressed as percentiges
Hof f the loan, ra'her as actual dollar amounts as above.actual

Thus the interest rate described above could have been
\,__

expressed as "5/6 of 1% per month" or "10% pex,year:"

Percentages, of course, are completely interchangeable

with fractions or decimals, so we could express "10% pe? ,

year" as "0.1,0 per year" (the suppressed decimal in 10 is

moved two places left) or "10/100 per year" (the 10 is
e

placed over 100), which reduces to "1/10 per year." Also
1

94)

"5/6 of 1%" is the same as "5/ %" (though this is a little

hard to read) and can be wri ten as "0.833%" or "0.00833"

or "5/600" (which reduces o "4/120"):

When interest is added to a loan to find the total

owing, we_can divide t e new sum by the original to find

the growth factor< r example, suppose the interest after

one year is added t. that $3,000 loah discussed above. The

interest Tate was 10% per year, so in one year the interest

is $300 and the otal owing is $3,300. Dividing $3,300 by

$3,000 we have the growth factor 1.1 or 110%. If you sub-

tract 1 or 1'0% from these, as appropriate, you have the

interest b. k. (1/10 or 10%). This works in the other

direction also add 1 or 100% to the interest, as appropri-*

ate, an you have the growth factor.

41
Exerci e 1. The annual percentage rate on a loan of $1,000 is 9 %.

Wha is this interest'rate as a decimal? as a fraction? What is the

thly percentage rate? How much is the interest lor four months?

'veyears? What are the growth factors for these two periods of time?

Of

Suppose money is deposited in an account to accumulate

interest. To be specific, let $1,000 be deposited for one

year at 12% interest. (This may be usurious, but the num-

bers are convenient for illustration!) One possibility is

that the interest earned will not be credited until the

end of the'year. Thus at'Ithat time the $1.,000 will have

earned $120 interest and the total value will be $1,120.

Now supplier the depositor makes the following argument:

"If my $1,000 earns $120 in one year, then it earns .$60 in

six months. I wan't the $60 after siirmonthsor else I

want it added to what you owe me, and interest calculated
, /

on it." The depositor would get slightly more at the end/

of the year this Way, since the $60 credited after six

months would itself be earning interest fdr the second half

of the year, namely $3.60. The total walue of the deposit

would then be $1,123.60.
0
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Now suppose the depositor is greedy and wants the

interest reckoned After each month. Then in each month

his money earns 1% (i.e., 1/12 of the annual interest rate

of 12%). So after a month $10 is added to the account and

$1,010 earns Interest the second month; this earns $10.10

. in a month, and so during the third month $1,020.10 is

earning interest, etc. At the end of the year $1,126.83

will be due, a few dollars more than under the previous

plan.

If the depositor is still greedier and wants the

Interest earned each day to be added, or each minute, or

each second, the amount in the account at the end of the

year will clearly become grodter and greater. But how

great can it get if the de

Is there an upper bound

ositor is infinitely greedy?

how much interest can be earned

no matter how frequently the depositor demands.the interest

be compounded?

There is a bound. Here'.s why.:._ At the end-of the year

th account will include the-original $1,00trplus the

interest on it, plus some interest on this interest, plus.

interest on the interest on'the.interest, etc. Even if

this process is continued to infinity,. it turns out a

finite sum is obtained.

The 12% interest on the $1,000 will itself be earning

interest for at least part of the year--actually, if com-

pounding takes place many times, bits of it will earn from

nearly the beginning and other bits not until near the end..

But in no way could the interest on the interest exceed

121 of the interest (12% of $120, or $14.40), because it

would only earn the full 12% i.f it were all invested for
Cif

the entire year. Now this second-level interest, the

"interest-interest," so to speak, also earns interest for

part of the year, but for the same reason as above the

interest earned by the interest-interest cannot'exceea 12%

of itself (12% of $14.40, or $1.73).

3

This reasoning may be continued indefinitely. If we

can sum this series of'diminishing interests on interests

to infinity, we will surely have an upper bound on the

total the borrower would be liable for at the end of the

year. This bound is independent of the number of times

compounding is required, because it is a valid bound for

every such number. For we have overestimated at each

stage, and overestimated the number of stages, which of

course would inevitably be finite-no matter how often the

depositor actually demanded compounding. The upper bound

is

$1,000 + 12% of $1,000 + 12% of 12% of $1,000 +

This is a simple geometric series with first term $1,000

1 and common ratio 0.12; its sum, by a well-known formula

from high-school algebra, is the first term divided by 1

minus the common ratio: $1,000/(1 - 0.12) = $1,000/0.88 .

= $1,136.36.

-To see this dire-a-IT, in case you've forgotten the

format
.

S = 1,000 + 0.12(1,000) + 0.122(1,000) + .

+ 9.1211(1,000) +

Multiply by 0.12 on both sides:

-0.12S = 0.12(1,000) + 0.12
2
(1,000) +

Each term is turned into its successor. Now subtract,

and we obtain 0.88S = 1,000, as before.

(Strictly speaking, we have assumed here that the

series converges, and merely determined what it would -con-

verge to if 4,t converges at all. It is not,hard to prove'

rigorously that it does indeed converge. It is done inl

many elementary textbooks/We use almost the identical

trick. in -the section below on annuities.)

' Let us now proceed algebraically, so that our

results have more general validity. Suppose an amount P

is invested for n years at ap annual interest rate of r.
4
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Suppose that compounding occurs t times per year. Then

fach time interest is compounded the rate is r/t. After

Ithe first Ariod the interest is (r/t)P, and this is added

to Pfor the second period:

P +i-P= P(1 + I).

After the second period, thfs amount is multiplied by
1 + r/t) (She 1 times P(1 + r/t) because the principal is

still included, plus r/t,times P(1 + .r/t), which is again
the interest). At the end of each period the amount on

account is multiplied by another factor of (1 r/t). In

n years there are nt such periodshence at the end of' n

years the 'amount that R has grown-to is

(1) i)nt.

Thig is a very important and useful formula in ifs own

right, but we are interested in it for help in answering

the questibn posed above: What is the. effect of indefi-

nitely increasing the frequency of compounding? We want,

in the jargon of calculus, to'take the limit as t,..

Execcise 2. Let $5,000 be deposited at t% annual interest. Find out

how large the account will be in five years jf compounding takes

place (a) once; (b) annually; (c) quarterly; (d) daily; and (e) every

minute!

Exe'rcise.3. ..Sulvose a $5,000 4oan is paid back double inirve years.

Find the annual percentage rate of interest if compounding

place (a) once; (b) annually;,and (c) daily.

.

greater than any bound. This limit, whatever it may be,

is denoted "e," and it turns out by further considerations

we can determine its value to be, approximately 2.71828....

It would be nice to nail doWnexactly which number

this is, but alas it is irrational (this ,can be shown with

out much difficulty), so it is not possible to express it

as a quotient_of-gntegers, nor to give it as a repeating

de cimal. As a matter of fact it is a transcendental

number, which means it is not even the root of any poly-

nomial with integer coefficients (this is somewhat more

difficult to prove; it was first done by4Hermite in 1873).

So it is also not pogsible to nail. the number down by

specifying such a polynomial, as we can do for example with
VT, which satisfies x 2 2 = 0, and is basically defin4

by the propetty of satisfying this equation.

So we know that 1 plus a small numbe,f, raised to a

power that is the reciprocal of that small number, approaches

something which we have chosen to denote by e. It isn't

really essential to understand where e comes from; the--main

things are that it's a number, its value is about 2.718,
and (1 + z) 1/z

is close to it when z is small.

'This isn't quite enough to answer the limit question 6'

about interest, however, In our expression P(1 + r/t) nt
,

it is true that r/t is getting small as t4w, but we are .

nc57raising (1 + r/t) to the power t/r, which would the
reciprocal of r/t. If we were, the limit would be e. This

difficulty is easily remedied. Let us rewrite P(1
as P[(1 + r/t) t/r,)

nr
, using= the well-known rules of exponents.

The part in brackets goes to e as t increases; so the limit
we seek is Penr .

rit)nt

iirshown in calculus classes that the expression
Let us recapitulate \A/hat this quantity means: This(1 + z)

l/z
approaches some limit as z gets very small.

is the limit of the amount to which an:investment of P couldThe argument rests on the twin facts that the quantity con-
grow in n years at,an annual interest rate of r, as theZinues to increase as z shrinks, but not without bound;,
frequency of compounding,increases indefinitely. It is

3, for example, is easily shown to be a bound. This argu-
higher than any amount that could be obta4ned by, any finite

ment.shows that the limit must exist, but it does not number of compoUndings, however large. It is also the
reveal what its value is, except that it is obviously mi

5 smallest number that has this propertyit is just.exactly

'7
6

f) 1
0



large enoughWe might say picturesquely that this

expression represents the effect of compounding continuously

that is to say, compounding at every instant." It is as

though interest is added exactly,As it is earned--the;e is

no waiting period at all before adding the interest sq it

begins earning interest itself. In a sense it is the

natural and inevitable conclusion of the gredy lencer's

line of argument that he should have any credited

the very moment it is earned so that it in turn can begin

to, earn interest:

It is' important_ to realize 'that all of this does not

make one formal whit.of sense! Itjs a bit like trying to

talk pout the bottom of a bottomless pit, or theismallest

Plositive fraction. If you're going to compound .interest you
0

have to wait some amount of time or there is nothing to

compound. But any length of time youactually wait is too

tong, as there would always be a shorter time. There is

simply,n6 way to Compound "as often as possible." Nonethe-

less, the concept of continuous compounding has intuitive

appeal, and is in'any case formally defined as above in a

way that is thoroughly logical and defensible..

The behavior of the total investment's value over

time under continuous compounding is commonly refyyred to

as continuous growth. Note that the quaritity changes con-

tinuouslyoW, whereas when we compounded t times per year

it grew in'discrefe jumps and was constant in between.

1

To summarize then: Ifligc an investment P is alloWed

to grow for tsyeav at an annual interest rate r compbunded

contiOpusly (or where art initial value P experiences con-

tinuous growth for t years at an,annual percentage' rate of

the final value is

pert.

,

1.

Though there are obvious concepttfal difficulties here,.

and, the concept of continuous growth takes some getting

used to, computationally it is much easier to deal with

4

7

than discrete compounding, especially-for frequent

compoundings. -Compare, for example, the calculation of

daily interest for one year at an annual percentage rate

of 12% versus the c"1Culation Of continuous interest:

Daily Continuous

0.12
$1,000 x (1 7-)

365

= $1,127.42

$1,000 x e°.12

= $1,127.50,

Incidentally, note also that as expected the continuous

compounding.g.ives a slightly higher. value.

Many hand calculators have keys for calculating these

quantities easily. To calculate e
x where x is*some number,

punch in x, on the keyboard and then hit the ex key. This

was the method, used in the right-hand calculation above.

The calculation on the left is facilitated by the yx key:

after d .jviding 0.12 by 365 and adding 1, hit yx, then'

punch in 365 followed by thy = key..

Exercise 4., If $1,200 is loaned for 20 years at an annual percentage

rate Of 5% compounded continuously, how large does the account grow?

Exercise 5. Refer to Exercises 2 and 3 and answer koth questions if

compoUnding takes ,place continuously.

. 1

2. APPRECIATION

Though the formulas for continuous compounding are

useful in actual interest problems, they are even more use-

ful for undertanding growth in Value generally. Suppose,

;for example, that apiece of property appreciates in value

from $30;000 to $45,000 over a five -year period. It is

not reasonable to regard the increast of $15,000 in value

as having occurred in five equal jump of $3,000 separated

by intervals of one year. One would expect that each year
. ,
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it would'increase a fixed percentage in value. This is

because any property mould pre8umably be increasing at

any moment at a dollar rate that would be proportional to 1

its value, and this in turn stems from the obvious fact
t

that all individual dollars of this value would, be growing

at the 'same fixed rate.

Call the annual percentage increase r, so that in

five years thproperty is worth $30,000(1 + r) 5 , which

)

must equal 45:000 by our hypothesis. Thus r can be solved

fort (1 + )
5

= 1,5, 1 4 r= 5
iT7T . 1.084472 (using the

yx key again), and so r = 8.4472 %.' What we aresayiniv is

that the succession of value; at the end of each year

should4 foxm a gebmeti,ic prpgres'sion rather than an arith-,

met,iC progression. The values increase in .fixed ratio

rather'than by a fixed diffrenc'e.
.

. Even this figure we have obtained, however., , is mis-

leading, , for it suggests that 01-b.-property took a4Sisc,re,te

remained'jump upward-in valuerat'the en.c1-4,of each'yedr and
,

% consta., ntothere whereasTresumably its value would'.
. 4 , ' - 4 .

have c4angeesm46tHly;and eonlindpusly throughout the:+e
years: 11.p. t'Sethe Armdfti Pent'. WIth .P' = "$310,000; apd n =5:

,,',Set Ithi.s.equal to'$45,040 and solve for

1
t , ,b5r'.

Y ln r = 8.1093.,%,

"ln" operation is so to speak, the "opposite" of the

"ex" Operation, and if aan alsob,e adcomplished'on most'

.hand calculatorkby pressing a Dutton.)

Note that in one year at continuous compounding aith.

this r, the_growth factor is'e 0.081093 ,re 1.08;1472, so the
-

actual increase in a year is8:.4472% as shown in our

earlier da+culation.; ' Y '4
1%.

. .
Ex6rciS 6. If a $100,000 investment exper'rcnCes continous growth at

an annual, percentage rate of 12%, what will it be, worth.after two

..years?

9

_Exercise 7: If a house is purchaed for $40,000 and sold'aftfr

three years for $60,000, what was the annual growth rate r? By what

percentage dial it actually iofrease in each year? (This can be

computed by two methods, which should.agree.)

.,>

3. THE "RULE OF 72

Investors often use the doubling -time of an investment

as a good measure of how profitable the investment is. The

more rapidly you can double your Money, of course, the'MOre
deSirable an investment is.

According to our formula, e " is the growth factor by

which the value, of an investment will grow in n years'at

rate'r. .When th-is factor is 2, the investment has doubled: :
enr 2, so nr = In 2 = 0.6931. If r is expressed as a

percentage, then nr = 69.31, i.e., the doubling time in

years times th interest rate is about 69. _Oddly enough,
, title "R le'of 721'1 Actually; the figure of 72 is

more reasonable in place-4f 69 if r'denotes the equivalent
4

annuar,plctpase after ajlowimi.fr continuous compounding,
in astead of.the actual i tantaneous growth rat=for

OP

example (see above),. r = 8.1093 %,,a then in One year It
,

this growth rate there will be' an-increase.in value of
80472%. 'The slight difference between these two figures

4.1 make the produdt - roughly 72 instead of 69. Sb the
A

"Rule &f 72" says

"The'product of the'doubling time the actual
`_annual growth rate is'72."

For example, money will double in 12 >Tars at 6%, in 8

years at 9%, etc.

\ The Rule Of 69 is always valid, but, strictly speak-

ing, the Rude of 72 is not. It holds approximately when

the interest rate is .about 8%,"but breaks down for values
- 4

,of r much greater or much less than this. In practice, it
'Palways" holds.

Exercise 8: 'About how long wilt it take an investment to double at an

effective anneal percentage rate df 10%7
10



Exercise 9. At what annual percentage rate is an investment growing

that doubles in four years? _

4. ANNUITIES

Next, let us consider a slightly more elaborate prob-

lem. Suppose that regular monthly additions are made to .:

an interest-bearing account. We will develop a formula

for the increasing sum in the account as timepasses.

.For convenience, let us assume that interest is compounded '..

monthly. If the payments into the account are made regu-

larly-at some other interval than monthly, and the interest

is compounded at thc same interval (or more often depending

on the situation), all our fordulas will continue to hold

with suitable'reinferpretation of the basic, unit of time.

. Let G be the:amtunt adda ed to the account each month,
and r be the monthly interest rate (which can of course be

obtained from the annual percentage rate bystliariding by 12).

We.will calculate S
n'

the amount in the account during

month n. During month _1, there is G on deposit, earning

interest rG. At the end of the month, this interest is

paid and a second sum of G ip deposited, bringing the-total

to G(l+r) + G.on deposit during month 2. At'the end of

this second month, this amount is multiplied by (l+r) and

another G added, so that during month 3 the amount on

deposit is G(l+r)2 + G(l+r) + G. Continuing likewise, we

infer that during month n,there. is on deposit the amount

Sn = G(l+r)n-1 + + G(l +r) + G.

You should be able to visualize this expression as the sum

of the following (in reverse order): a new deposit G, a

/ month-old deposit of G with its interest (simple), a two

- month-old deposit of G with its interest (twice-compounded),

and so on up to the original deposit with n-1 months'

interest. 1 0 11

Now we can- use an old trick to expreis this quantity

more conveniently. (This is the trick we allude'd to in

the first section for summing a series.) *Let both sides

be multiplied by 1 + r. We obtain

(l+r)Sn = G(l+r)n + G(l+r)n-1 + + (.1+r)G

Now we subtract the original equation from this:

rS
n

= G(l+r)n G.

Note that most of the terms cancelled because thdre were so

many in common, and we are left with a closed-form expres-

sion., Thus we achieve our final result:

(3) S
n r

= -9-((l+r)n - 1].

Tfiis is the formula we have been seeking. Remember, r is

the monthly interest.

This formula is of considerable value in its own right,

but it can be turned to e'en gredter use ip under'standing

mortgages or, for that matters, any loan which is paid off

in regular installments and on which interest is computed

only on the remaining b)tance.

Exercise 10. If deposits of $100 are made monthly to an account

paying 5% annual interest, compounded monthly, how much is in the

account after two and one-half years?

./

5, MORTGAGES

Let us consider \ typical mortgage situation. Suppose

someone takes. out a $20,000 loan at 9% annual Oterest and

a monthly payment obligation of $200. (These figures, by

the way, are totally hypothetical and are chosen for con-

venience in illiAtrating the theory.) After onelmonth, the

interest is 3/4 of 1% or $150. (As,usual, 'we divide 9% by

12 to get the monthly interest rate.) Of the $200 payment,
12
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then, $150 goes 'toward interest ;and the remaining. $50

reduces theprincipal. In the second month' the debt is
y

$19,950. At the 'end of these05pd%Orith; the interest is

$149:62. of the $200 payment there remains now $50,.38

to go toward the prineip61, so intie third month the debt .

is $19,899.0e Pro4ecting ahead several months,'here's
itrhat happens:

End of
Month Interest $ TOward

Principal
. ,

New Balance ,
I

3 ' $145.25 $5075 $6,848.87

4 148,87 51.13 19,797.74
t

5 148.48 51.52 19,746.22

6 148.10 '51.90 19;694.32

7 147.71 52.29 '1%642.03

8 147.32 t 52.68 ".

19,589.35

The calculations can be quite tedious if performed

one-by-one like this,-and it is hard to see a pattern.
But . . mathematics to the rescue!, The matter is simpli-

fied substantially if w*e restrt to the foldgwinglrick:

. Let us imagine that-each month's paythent M gges first to

pay off the interest, ovtArprincipal_as usual, but that

the rest'will be considered a counter -loan, instead of a

reduction on the original pYinciPal. Let us suppose further

,that this counter-loan'earns interest atthe same rate as
the principal. The principal loan balance thus remains

unchanged'undei. this artifice, but in actuality the bor-

rower's liability at any time is the difference between
the main loan balance and the counterlloan, which is

equivalent to the amount calculated more "natuKally" above.

By the' distributive law, the interest calculations would
be- equivalent: r(L - C) = rL - rC, i.e., the left-hand

side is the interest on the remaining balance as normally

calculated, whereas the right-hand side represents theinet
interest owed by he borrower (the difference between the

13
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,

interest due on the 'original, unreduced principal and the
interest earned on the counter-)oan).

The advantage of viewing the situation 'in this
7

-manner, is that, although- nothing has been changee in--sub-
' stance, we can now apply our annuity eotmula, since'that-

o
. is, in effect, iat the counter-loan is.

To. Clarify. matters, let's take alook at a, specific,
loan and xamine the first few months of boOkeeping,

puted accOrd.ing'to both the convention* and ,`the new
viewpoints. Note that ihe "net" column of Method 2 agree
with that of Method 1.

Loan: $20,000 @ 9% per year; $200 monthly payment

... METHOD 1
(in $)

METHOD 2 (in $)

Principal Counter-Coan Net

Month 1: 20,000

interest +150

goyment -200

Mouth 2: 19,950

interest

payment -200

Month 3: 19,899.62

Month 1: 20,000

interest +150 0

payment,_ . -150 "deposit" 50

Month 21 ,20,000 50

interest +150 "inxerest" 0.38

payment .-150 "'deposit" 50
.

Month 3: 20,obo .° 100.38

20,000

+150

-200

19,950

+149.62

=200

19,899.62

We can now make the fo-llowing. algebraic generalization:
Let L be the original loap, M the monthly payment, and r the
monthly interest rate. (We keep emphasizing monthly rate
when we use it, because the federal Truth-in-Lending Law
not only requires [in contracts, not math books) that all

interest rates must be expressed in the form of an Annual .

Percentage Rate (APR), but also vaguely suggests, that ft.is

immoral or crooked to do otherwise!' We'll discuss this mat-
ter mdre fullty beloy.)

1 0 '? Air



The monthly interest due on theprincipal L is rL,

leaving (M-rL) to go into the counter-loan. This is the

"G" of our ,earlier work, 'so after. the nth payment, the

-value of the ,counterifloan is [(M-rL)/r][(1+r)n-1], and the

actual balance due (B) is L minus the counter- loan:

(4) . B = L +
rL-M n

. of B: L(1,ion -
ty(1+1.)n_1].

(In Formula (4), the expressfonAL-M will normally be

,negative, and it might seem more natural to write

-". . . L (M-rL)/r . . ." However, the form given is

.more suitable for use with a hand calculator.)

This formula can be used as it stands for two pur-

poses. One is 'to find the actual balance due on 'a foan

after n months of regular paymentwithout calculating all

thilintermediate balances. For dample, after 10 years or

120 months of payment or, the loan used as ;an illustration

above, the remaining balance would be $10,324.37. (Here

again, theyx key on a hand calculator comes in handy for

computing (l+r)n:) .

Exercise 11: If Montlly-paymenq of $150 are made on.a $15,060 loan

at an annual percentage rate of 10%, how much of the principal remains '

after 1 year? 2 years? 5 years? 10 years? 200 months?
.

The Other purpose is to find a "bqlloon" payment except

that this is reallythe same thing. and a good thing, too,

that "balance" and "balloon" both begin with'B!) If you

agree to make payments on a loan for a.certain period that

is, insufficient.to amortize it (that is, pat it off com-

pletely), then a rather large sum may be due at the end of

the term agreed upon. For example, if the above loan had a

10-yeaT maturity, the balloon payment would be"$10,324:37.

4-
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Exercise 12. If monthly payments of $70 are made on qloaii Of $7,000

at an annual percentage rate of 9%,and the entire balartce is due in

three years, what is the balloon payment?,

There ar erous other uses of our formula for,the

declining mortgage balance. Let's look at one more. Sup-

pose that after 5 years of making $200 monthly paympdfs on

that $20,000 loan @ 91, an extra $2,000,is paid against

the principal--perhaps, for example, out of an 'inheritance.

,What effect does this have on the lngth,of the loan, the

future behavior .of the d4Clining balance, and the total

interest ptid?

First, w,% calculate the balande after 60 months:
A

$16,228.81. Awl, we subtract the $2,000., so the principal

Decomes $14,228.81. Now we simply start over with this as

our new L, From this point on', the loan will take 102

months. (8 years and 6 months) to amortiz. (The rule for

determining this, as we ll as the original' length of the

loan, is discussed below.) Since the-original loan would

have taken '15 years and 6 months to pay off, the total

time has been shortened by 24 months (2 years), whichmea

24 payments of $200aconsiderable savings!
,

.

(Do not be Misled, however: $2,000 hasbeen tied up

for many years in order to achieve this saying. In facts

using our counter-loan techniques, we see clearly what is

happening:. The savings of $4,800 is exactly equal to the

interest and.principal that would be generated over the

remaining life of the loan b) a $2,000 bank account earn-
s,

, ing 9% interest. Or to put it another way, if instead of

using that $2,000 as plYment on principal, it were invested

at 9% per year (compounded monthly), then it would.be

exaetly sliffiLent to pay off the last 24 monthly loan '

payments as they came due. If you can find a place to put

the $2,000 where it earns more'titan 9%, you're better off

doing that and pocketing the difference. If you can't, .

'you're better off making the principal payment.)

ns



By modifying Formula (4) in certain ways, it can be,

put to.other important uses.- Basically, what we can do is
solve for any one of the variables in terms pf, the others.

Suppne we want to know how long it will ..t.g.)(e to amortize

a loan cispletely. .This means we want fhe.loan balance to

be zero,'i.e., ,L.1 [(M-1,)/11((l+r)n 1) = 9, or
L = [(M-r1,) /r)[(1+r)n 1): Notice the second form of the

equation Merely'states that the counter -loan equals,the

original loan. We solve.for n:

rL
(l+r)11 1,

(1 4)11. Mrlh M
and so

log Fr7r

(5) n log (1+0

It as immaterial which base the logarithms are -as long as
they are th same. Tide ratio of logs is always independent
o,f base: Norma)ly one would use either commOn logs (base
10) or natural logs (base e).. There.is one advantage to
using natural.ldis--when r is small,as it usually will, be

inoracticeln(l+r) is almost equal ,to r'. This is'not
true irk any other base. So .

(6) =A) M
. n -

.

The quantity M/(M-r1) is the ratio of the'monthly

payment to the portion of it that rapfesents gain on princi-

p;1 after paying interest the first month. This might be
called the "Payback Ratio." We will fer to it as the PBR.
For instance, id our example, the PPR is 200/5.0 = 4. T9, .

compUtethe amortization period of this loan, we evapivate
(log 4) /(log 403/40,P)fid get 185.53. This means that in
lAti months (or 15'-1/. :y4ars) the loan islpaid off. -,

.
, T1?e last payment would not need to be a full one--that
is the significance of the fractional part-of this number.
To find the exact amount of the final payment, compute the w

. ,--

remaining balance after'185 months, using Formula (4):
,

.

N.7

8
o

A105.88. Acid the interest on thi's, which is $Q.79, and you
have the final payment, $106.67.

NI\

Exercise 13. For the loan of Exercise 11, find out how many months

will be requiq.ed to pay it offa0 what the amount ofthe final pay-
,

ment will be .h Do the same'for the loan of Exer.41ge, 12 (assuming it is

allowed .to run out to maturity).

Suppose you are planning a loan (L) and you know the

interest rate (r) anc1 how long you wantpthe loan repayment
to take '0). We can calculate the required monthly_paYmane
(44) a's follows: We still have

r

We solve now for M:

M = BL
+ rL = rL (i+r)n

, or
]

(l+r)n - 1, . (I+r)

rL'
(7) ) M =

1 1/(1+On

Exercise 14. If you need to borrow X50,000, if the interest, rate is

and f the lender will amortize over 25 years; finethe required

monthly payment.

On the other band, if the monthly payment (M) is

fixed and we want to know how muc lia loan (L) we can

swing given an interest rote

solve for L instead: .1

(8) L = 1147
(i+r)

n
1

-

), amortited. n months. we

Exercise 1. If you have $250 per month to pay on a loan, if the

interest rate is 9-1/2%, and if the lender will amortize*over 30

years, how much can pti borrow?

1,8



There are circumstances when a loan is given with

interest, but the specific interest or interest rate is
4

not explicitly provided, and sometimes the actual amount'

of the loan is not even made entirely clear., The lender

is considered paid off when a certain number {n) of

monthly payments (M) have been

In saying this, we are taking a very strict point of
4

view looking closely at what people'are actually doing

rather than what they are sayins.; Rarely does anyone

intentionally riot specify an interest fate, and usually

there is one floating around even if for possibly, obscure

reasons. The lender may have one in mind and, based on it,

may do some, calculations that satisfy him as to what he

expects from the borrower. But, unless the lender has been

careful to do the calculations exactly as we described them

above, his figure may bear little relation to the actual

effective interest rate that the borrower is paying, and

thus, from a strictly mathematical point of view, the real

interest rate has never been made explicitly clear.

What we are going to look at, then, is the problem of

calculating exactly what the effective rate (r) of interest

is when we are given: (1) how much the borrower actually.

gets (L); (2) how hig'his loan paymenti are (M); and

(3), hew long he has to make them (n). We will make our

computition without listening at all to what the lender did

to Ilgure out which values df M and n will satisfy him.

This is the kind of calculation that must be made in

order to. comply with the'federal-Truth-in-Lending Law,

since all interest charges, however'-the lender may'arivce

at them and,however+e may think of them, must be expressed

as though calculated in a standard manner, namely, the way

we have done it. This is . called "the actuarial tetgod;"

Moreover, when the actual effective rate of interest is

finally determined, it must be stated in the form of an

Annual Ilercentage Rate (APR). This is 'So that people will

always see this important quantity - expressed in the same
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units and thus will not be confused by having to compare

numbers that really don't mean the same thing or measure

in the standard way.
' 4

The formula for the equivalent monthly ijerest rate,

is found by solving our familiar equation (Formulas (5),
4

(7) , (8)' for r:

-M(l+r)n- + rL(l+r)n + M = 0.

It is easier to solve for the, growth factor l+r,so we

write

M(l +r)n + (1 +r - 1)L(l+r)n + M = 0

Or 1,(1+0"1 (L+M)(1+r)n'+ M = 0.

When X denotes the growth factor 1+,r And a is the ratio

M/L, the equation becomes

Xn+1 - (1+a)Xn+ a = 0.

Unfortunately, though this is merely a polynomial of degree

n+1, such an equation in general cannot be solved explicitly.

Some method of estimating roots would have to be usedtksuch

as Newton's Method.

Newton's Method is a clever device for turning a guess

at the root of an equation into'a better guess, By repeated-

ly using the method, it is possible, in just 'a few steps,_to

come extremely close to the rootso close that, for all

intents and purposes, we "have" it. The formula is a bit

messy in this case, but with a hand calculator the arith-

metic is reduced, to pushing a few buttons.

Let

Then

,.

f(x) = xn+' - (l4a) + a = a - .)cn(l+a-x).

p(c) = [(n +l)x - n(l+a)lxn-1,

AndltheNewton's, Method formula for proddcing a better

guess'X' out of an original guess x is:

100
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. x' = x - !,(), - x . a xn(l+a-x)
t tx)

1 [(n+1)x n(l+a)]xn-1

(nx -Jn-1)(a+1))xn -. a

((n+1)X - n(1 +a)),xn:1'

Let our first guess be 1+a. Then

x' = 1 + a a

(1+a)11'

which suggests that

- r = a '(1.4a)n - 1

(1+a)1!'

We could apply the method again using this value for x'and
calculate a new x'. At this point it is easier to do

numerically than algebraically.'

In many cases it is just as easy to guess values of r
and see how close they come. By repeated guessing we may
be able to come very close to the true value of r. Let us

,look at^en example: Suppose you buy a car for $2,000 down
and carry $3,090. Suppose -you make 30 monthly payments of

$200, a total of $6,000. How much was the interest? Here,
M = 200, L = 3,000, and our first guess might be that

r = 5.7% ger month (or 68.5% per year), based on the first

approximation obtained by Newtons Method above. We can
easily check how (lose we came. Let's use. Formula (5) to
figure how many monthly payments of $200 would be required

to-amortize a $3,000 loan at 5.7% per month. Then
rL = 171.15, M-rL = 28.85, the PBR is 6.93, and the

amortisation would take '34 months. Since, in fact, the loan
is'paid off in 30 months, this trial intdiest rate must be

,too high. If we try r ='5% per month, the oan is amor-
tized in 28.4"months. Thus this figure is too low, and

the correct figure apparently is somewhere between 5% and
5.7%. On the basis of linear interpolation, we,might
figvre that 30 is about;30% of the way from 28".4 to 34, so
perhaps next we should try guessing a value of r that is
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about 30% of theway from 5 to,5.7, i.e., about 5.2%.
With a hand calculatorit would not take long to find

r correct to the hundredths place by repeated trial lnd.
error of this sort.

Exercise 16. A used-car dealer tells a customer the following:

"We'll sell you this car for $600. You pay $100 down and we'll

carry the rest of 14% interest for one year. So the loan will be $500

at an Annual Percentage Rate of-14%. [Note the, Truth-in-Lending jar-

gon creeping in.) 0/.

"Now, 14% of 600 is $70.[watch him carefully) so you'll owe vs

a total of $570 at the end of ihe'year [here's where it starts to get
fishy). You pay us back in 12 equal monthly installments of

570/12 = $47.50." (You're paying interest on'the whole amountgor the

entire year even though you're not keeping the whole amount the entire
year. This,calculation would be perfectly correct if you were only

reqUired to make one payment of $570 at the year's end.)

Calculate the effective APR this custoller would be, paying.

Exercise 17. The used -car dealer next door arguesasfollows: "We'll

sell you this car for'$600. You Oby $100 doWn and we'l carry the

rest at 14% interest for one year. Now, 14% of $500 is $70, so we'll

take our $70 now [here's where,he diverges from his neighbor), apd you

can pay us the $500 back in112 equalmorithly installments
of

500/12 = $41.67." (This is called 'front-end interest," because it is

taken out before the loan 'starts.) The customer actually has to pay
. this dealer .$170 now ($100 "down" and $70 "interest") pp he's really

getting a loan of only $430. No wonder the payhdnts are lower!

Calculate the effective APR this customerr would be pa jng.

Exercise 18. The customer above says he has only $100 to p y ntm., so

he.'s got to borrow the full $500 even if it costs him more. The. R
dealer says OK, he'll settle for 4100 now plus 12 equal monthly.pay-

ments of $41.67 times 500/430 (or $48.45): since the loan has increased

by the 1atjO 500.to 430, so should the monthly payments.

Calculate-the effective APR this customer would be paying.
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Exercise 19. A lender makes a ';nominal" loan of $10,000 at a

"nominal" APR of 10%. But He charges a "loan fee" of $1,000, so the '

borpwer actuallye'ecejvel. only $9,000. Yet his repayqent schedule
.. .

is as-though based on the nominal value of the loan.
.

(a) Calculate hbow,long he would have to pay $150 per month to

pay off a $10,000 1cari. (This actually is how long he

will have to pay to meetothe lenderks terms.)

(b) Calculate his effective APRif, in order to

*$9,000 loan, he'paid $150 per month for the number of

months calculated above,

satisfy a

Another use of this technique for finding an effective

annual percentage date, which is closely related to Exer-

cise 19above, is to compute the effective.yield of a

discoucted note.. Sometimes an investor who holds a note
4

as secuYity on a loan finds that he needs the money and

must sell the note to another investor. To "sweeten the

,pot" and Induce another investor to buy his note, he may

1-; sell it at a discount,-that is, he may accept less than the

actual balance due at that t4rti-, when a lender origi-

nally accepts a note from a bodrower as security for a

loan, he may require that the borrower pay a certain fee.

This results in the borrower actually receiving, less of.a

16art:than the face value of the note.

What may complicate both of these situations is that

the note may require full repayment prior to amortization,

so there would be a substantial balloon payment.

Suppose, for example, tha; the loan in Exer:Cise 19

must be repaid after three years. We can use Formula (4)

to calculate the nominal balance after 36 months of paying

$150 per month on a nominal loan of $10,000 at a nominal

annual percentage rate of 10%. In this case, L = 10,000,

r = 1/120;M = 150, and'n = 36, so the balance is $7,214.59,

the actual balloon payment due. But remember that the loan

was only $9,000, so the effective annual percentage rate
23
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.must" have been somewhat higher. than 10 %. Let ususe----h-e--

trial and error method to find it. We take L = ,000,

M = 150, n = 36, with various trial values of r, and cal-

culate'the balance by (4,), trying to get as near as

possibteto $7,214.59:

When

r = 12%, balance due is $6,415.39--too low

=

,= 14 %,

= 14.7%, 1.

So,

that is-

$6,703.50--still too low

$7,L001.01--still a bif low

$7,214.99 very close)

14.7% is the effective annual percentage rate

actually paid.by'the borrower and actually,

received by the lender. 1

Exercise 20. A borrower wants an actual $18,000, and is willing to

pay a nominal 10% annual percentage rate, and a 20% discount. What

would be the nominal or face value of the loan? Find the effective

annual percentage rate if the loan is paid back in full at the end of:

one year; two years; and five"years. Assume a monthly payment of 1%

of the nominal value of the loan.

Exercise 21. The face value ofa n is $5,500, and the nominal

annual percentage rate is 10%. Assume the borrower pays a discount of

10%, but that a loan broker takes 2% and leaves 8% for the lender.

at actual amount does the borrower gel? What actual amount does the

lender-put up? Assuming a monthly repayment of $55, carried on for

two years until a balloon payment is due, find the balloon payment,

and the effective annual percentage rates for both borrower and lender

(they will be different):

Exercise 22. A three-year note for $11,500 at 8$- annual percentage

,rate is taken without discount fty an investor. He receives monthly

payments of $115 for two years, then sells the note at a 10% discount

(off its current valUe). Now much does he get? What has been his

effective annual percentage rate of return? What is the ballon pay- .

ment when theinote is paid off after another year? What is the note

"buyer's effective annual percentage rate of return?
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6. CONTINUOUS APPROXIMATION

Anyone who has looked at a table of declining

balances to find a pattern has probably been` perplexed,

but, nonetheless, has undoubtedly noticed at least that

the balance declines slowly at: first, and then more and

more rapidly. For example, here is what happens to one of

the loans we have been studYing:

Initial Balance: $201000.00

Paid in first year: $

second year: I 684.04

third year,: 748.21

fourth year: 818.40

fifth year: 895.17

sixth year:' 979.13

seventh year: 1,070,99

eighth year: 1,171.45

ninth year: 1,281.33

tenth Year: 1,401.54

625.37 leaving $19,374.63 due

18,690.59

17,942.38

, 17,123.98 it

1 16,228.81

15,49.68

14,178.65

13,007.24

11,725.91

10,324.37

For readers who know calculus, we can make these

observations more quantitatfve by the following device:

Let B(t) be the declining balance. It actually decreases

in steps of course, namely M-rB per month. But let us

'suppose it declines continuously at the monthly rate of

M-rB. This is approximately accurate. We have, then,

the equation

-(rE -(M-rB) or rB =

If we multiply both sides by.e-rt, we obtain

-rt AB -rt -Me

e uy e rB -Me

This step may seem unmotivated, but,it las the advantage

of turning theaeft-hand side into the exact derivative

of the product of.the functions 13(t) and a -rt. This may

be checked by the well-known product,rule of calculus.
25
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So, whatever 8(0 may be, at least we know that
4

(Be-rt): Thus,

and so

Be-rt = Me-rt

B = + Ce
rt

.

The C is a constant introduced in taking the antiderlyative.

It can be evaluated by letting t = 0, and using tfie Observa-

tion that B(0) is L, the initial loan. The equation

becomes L = M/r + C. Hence, C = L - M/r, and, at last,

we obtain

B(t) = M-rL ert)

We see, then, that B is experiencing exponential

growth down away from the value M/r. .Notethat the pay-

back ratio (inveried)'appears in this formula, as the

coefficient of the exponential. We can graph B(t):

The value marked t, where B(t) crosses the time axis and

vanishes.; is the time it takes Uk4mortize L. Thii will

occur when B(t) = 0, i.e., when e is equalito the payback

ratio, or (1/r)ln PBR., Interestingly, this was the
'

approximatfdh we obtained in an earlier section, Formula ,(6).

- 11 r:-t.

1.
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PRESENT VALUE OF gUTURE PAYMENTS,

Suppose you sell your car today for $1,000, but the

A
buyer asks you to accept payment in d year. This amounts

to your giving him a loan of.$1,000,for one year. He

should pay interest to you at the prevailing rate, Con

versely, if he 'does not, then you aren't really getting

.'. $1,0.00 for your car: you're getting whatever amount -it is

that wouldIrow td '$1,000 in one year at the prevailing

interest rate. Think of this another way: Suppose the

buyer signs a note agreeing to pay $1,000 in a year-- -

what would the note be worth now if"yod tried to sell it?

You would have to sell it at a "discount" in order to

induce someone else to buy it, for after all the 1

other party would expect to make some profit during the

year he's going to tie/up his money.

To find out exactly what $1,000-one"year -ftom-now

is worth today, let's reasbn as follows:- If r is the,pre-
,

vailing-interest rate, and an amount A is invested today,

it would 'grow to Aer in .one year. For this to equal '$1,410,

A must be $1,000e-r. More generally, if a wment P-is

expectea in t years, it is worth Pe-rt today. .The payment

is discounted-by the factor e-rt...to account for:the for -

feited interest in'ty meantime.

Exercise 23. Suppose a forest could be cut down now.and a profit,

realized of $3,000, per acre; or, it Could be allowed to grow ?Or five

years and then harvested a:iptait of $5,000 per acre. Which is

better? Try dfscount rates of 10% and 12%.

a

5.

If there are several payments involved at different

times, say P, It time tk, then the present value df these

is

n

ke
rtk

k=1
1
1 1)".:
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Suppose the paymentsyk are all equal, say to P: and"the

payments are equally spaced, say at fhterval's of T, so

that tk = kT. Assume they start nowand continue indefi-'

nitely: The formula above beComes

(Crt)k,

k=0
('''

which is a geometric series and sums to P/(l_e-rt).
t

Exercise 24. Suppose,you.win a sweepstake's and are offered your

choice of the following prize options:

(a) $100,000 now;

(b) $50,000now plus $250 per month for-We;

.(c)° $500 per "month for life.

Calculate the present value_of each of these, and determine

which is best. Assume you will live a "long time," and make tht cal-

culations as though you will live forever. Try both r = 5% and r, = 6% ,

as the prevailing interest ratc.. (Ignore all income tax consequences.)

. There is yet another method for treating this 'kind of

Pi-oblem if the payments are.made more or llss continuously--

,
as, for example, income from a business:-revenue from a toll'

facility, etc. ThA. method requires concepts from the

integral calculus. Let the function I(t) represeht the rate

'qirecleipt of income at time t over an interval from time a

to time b in the future....Let [a,p) be partitioned into a

,large nupber n of small intervals of-length Atk anelet

I.(tk*)-be the iincome rate at a typical time tk* in the kth

subinterval. Then I(t
k
*)Ai

k
is approximately the income,

earnek-in the kth subinterval, its present values is

k
*)At

k
e
-rt

k
*

, and the sum

I(t
k
*)It e-rtk*

k=1

' is an'approximation to the present value of this anticipated

Income. Since, as the partition becomes' finer and finer, it

is abetter and better approximation, the integral

1 i '7
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I(t)e-rtdt must e t e exact present value of the
a
anticipated income from 1(t). If income-is anticipated

from the immediate present into the indefinite future, the

improper integral I
0
I(t)e-rtdt gives the desired value.

4. (Note that this quantityis a function of r. The

function so ()Veined from any given income function I(t)

it"generally known as the Laplace,Transform of I(t), and

is widely studied in engineering and applied mathematics.)

Suppose, for example, it'is projected that a shoe

store will mike a net profit of $1,000 per month, indefi-

nitely. Thus, I(t) = 12,000-, if t is in years. The

present value of this shoe store isf(712,000e-rtdt = 12,000/T.

At 10% discount, then, it would be traded fairly at $120,000.

Conversely, if the askingprice was $200,000, this would

' imply a discount rate of.6%.

.

Exercise 25. A propOsed hydroelectric power plant will cost

$50,000,000 to build. Is it worth building if the rate at which it

will generate revenue after t years is $1,000,000 /I per year? Note

the revenue rate will continue to increase indefinitely, starting at 0,

but its"rate of increase wjll gradually slow down. Assume r = 6.75%.

(Solution of this exercise requires knowledge of the gamma function.)

jf there are lump sum payments superimposed upOnla

coqinuouA,flow of income, then the'best technique for rep-

resenting the present value of these future payments is an

advanced mathematical construction known as the Riemann-

Stieltjes integral.

Whether a sum or an integral is,more appropriate to

measure the present value of future income, discounting

future payments in.this way is a standard concept in con-

temporary economic theory. For example, in examining the

wisdom of waiting another year for a cow to get fatter before

it is butchered, or waiting a decade for a forest to grow

larger before it As sawed down, it is unreasonable to com-

pare.the respective profits now and later as ifaollars

now and later are,equivalenl. Of course the profit will be

1'13
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nominally increased by waiting. But the er becomes

more realistic land more interesting) if the delayed',

profit-is discounted before being compared to'the present

profit, as illustrated above.

It is important to give careful thought to the value

of r in the discounting formula. The exercises have shown

how critical decisions may sometimes be reversed dependi

on the value of r. It should realistically represent the

value of doing without the money for a while. This is not

a mathematical matter, but it does have obvious mathemati-

cal consequences. It could be taken simply as the,value of

inflation--even the most conservative investor would at

least expect his buying power to be restored after.the

waiting 'period. It could be taken as the current interest

rate paid by savings and loans, or the current cost of
1

borrowing prime money.'0r it could be taken to be the

interest yod expect to receive from your investment program--

which could be quite high, if you're a shrewd investor! You

might, for example, take it to be the return rate calculated

in the section below on the optimal time to hold an

investment.

The discounting formula can be just as useful to the

person paying as to the person being paid. However, the

O

two parties to a transaction may have good reasons for

using different discount rates, and therefore they might

JT..differ as to' the true "cost" of postponing a payment.
NActually, it's probably a good thing they differ, just as

it's good that people place different "utility" val(ips on

various combinations of commoditie,s--,it's primarily this

difference that makes tra de possible, for each side can

think it's getting a good deal from\the,same transaction.

For example, take the shoe store discussed above. If

a buyer discounted future income at 10% and a seller only

at 6 %,.the buyer would be Ailing to pay $200,000, while

the seller would settle for $120,000. Thus they each would

"ink that a price of, say, $150,000 for the business was
30



fantastic, since. it represents a compromise discount rate

of 8%.

8. LEVERAGE

Most investors in real estate take advantage of the

willingness of lending institutions to loan mow, gener.

ously against real-estate investments. The general sta-

bility of-the real- estate market makes lending institutions

relatively confident that the/ money will,b9 safe, so they

are willing to loan high fractions of the.pOrchase price at

relatively low interest rates. Thus, most investors '

actually own a rather low equIty in their property. When

there is an appreciation in value of the property, however,

it all belongs to the investor, and this fact causes a

surprising magnification in the ratecof growth. Letus

illustrate: Suppose an investor buys a $50,000 property

with $10,000 down (his own money) and the balance of

$40,000' financed fborrowed). Now, let's say in a year the

property appreciates 10%, so it is worth $55,000. The

investor still owes (roughly) $40,000, bait now his equity is

$15,000: In one year his $10,000 turned into $15,000. 'Allis

is a 50% increase, five times'the rate of increase of the

property. The factor five is directly related to the amount

of his bank loan--he bought a property worth fives times as

much as his own investment. This phenomenon--the magnifica-

tion of growth rates through borrowing--is known as levcragg.

The general formula is as follows: If you have put up 1/n

of the money yourself and borrowed the rest, and if the

holding appreciates by a faCtor of r, then your investment

has appreciated by a factor of nr.
=

We are ignoring the obvious fact that an investor who

borrows $40,000 has to make pretty hefty payments to the

lender on this loan, most of which will be interest (if, as

usual, the loan is amortized over 30 years). But, if we

assume that the property under discussion-generates income

(e.g., an.apartment house, anoffice building), then, 31'

roughly speaking, we can presume that the income will be

enough to balance all the expenses including debt service.

The leverage principle actually applies to all invest-

ments, not just real estate, but it is of greatest

significance in real estate due to the generally large

values of n," as compared to the stock market, for example.

9. THE OPTIMAL TIME TO SELL

In the preceding example, the SO% Increase i; theq

.....

investor's funds is, so to speak, "too good to last." His

equity after one year is a much higher percentage than it

was initially--$15,000 out of $55,000, as ontiosed.to;- q

$10,000 out of $50,000--and during the second year his

leverage is correspondingly lower. If the property goes op

10% more to $60,500 during the second year his equity

increases to $20,500. Thus, during the next year his

equity goes only from $15,000 to $20,500, an increase of

37%--still very nice, of course, but not what it was. As

his equity continues to go up oiler the course of tlpe which

is what he desire4, after all), his leverage will continue

to decline, and percentggewise his.investment will'not be

as,good.
.

It might be su gested that after the second year he

should sell his property and buy something more valuable.

After all, with banks evidently willing to finance 80L-

and with $20,500 or a down payment-, le'could.buy a

$102,500.proper .1 Clearly, he is better off with the

profits from tie appreciation of a .$1045430 property

instead of a $60,500 one.
. . .

But if selling after two years is a good idea'beCauSe-
.

of the'fact that his leverage, which has fallo IOW, can

be restored, perhaps-sellingafter- one year Would.be an -,

even better-idea. After one year, Ire could realize 115;004_
. _

on selling his prUPeriy:Labuye the_ Meirtgagehith-as_

down payment on d second' investment would permit hiat,ZO buy

into a $75-,600 property: After -another "year this would,
: ,32
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appteciate to $82,500 and he WOuld have a gain of $22,500,

a good $2,000 better than before. If he wishes, he could

now sell again and buy into a $112,500 property as ahird,

investment-.

But again, if selling after one year is such a good

idea, 'why not sell every.six months when the average
leverage is even higher? Or every month, onevery day, or

-7=
every minute?!

A graph can illustrate what is happening. The figure

below shows the investor's leverage (ratio of the property's

value to his equity) as a function of time:

Since this curve is decreasing'as the property appreciates,

,clearly the sooner the investment is sold, the higher

his average leverage.

If one pushes this reasoning to its logical extreme,

it suggests buying and selling property every instant, It

also sug'gests very clearly that there'is an. important fac-
tor we have not as yet taken into account: theittual costs
of buying and selling. Every time a property is bought or
sold there are subpantial costs, such as title insurance,

agent's fees', etc? These will place a lower limit on the

length of time it is 'realistic to hold an investment.

.Let us make a theoretical calculation of the optimal
length of time to hold aninvestment. This will be. good

practice in mathematical modeling, too--and in understanding

33
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its limitations! We will have to make some simplifying

assumptions in order to, make the calculations tractable.

Unfortuna.tely,'these assumptions also cast some doubt on
the validity of the conclusions_ They'would be limited,
to say the least. But on some bright day, when you are
feeling adventuresome, you can try complicating the model
to make. it more realistic! In the meantime, at least we'll
have some ballpark guesses as to the most prudent course

for an investor to follow.

In buying a property there are certain costs of
acquisition known collectively as "closing costs " bank
fees, title insurance, etc. To preserve generality, let's
say they are c times the purchase price. In, selling, there

are alsocosts,.largely the agent's fee. 'Let's say the
selling 8osts are f times the selling price.

.There are also certain Continuing costs of maintaining
ownership of a property, largely the cost of debt service

(i.e., interest on the loan), but also taxes, insurance,
maintenance, etc. These can be substantial, but it is

reasonable to assume that there is income fro the property
to mitigate these, and not unreasonable to hypothesize, for
the sake of convenience, that this income is exactly suf-

ficient to balance the costs of ownership. Thus, our profit,

on the investment will derive exclusively from the apprecia-
tion, and be diminished only by the buying and selling costs
There are also tax consequences of both ownership. and sale

of a property, but we will ignore these, too, for simplicity
4i
n this analysis. (Incidentally, we are also neglecting

,

any gain associated' with repaying the mortgage during the
period of ownership--but this is normally very small,

especially over,the fnitial period of a 30-year loan.)

Let us suppose we have an amount I to invest 2;4 we_
find.a bank willing to finance all but 1/n of the purchase
price P.of a property, The closing costs will be cP, and
we have available 1-cP for the actual down payment. Thus,
we can

*buy a property worth P = n(I-cP), that is, n times
what we have available after al owing for closing costs.

23 .
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We solve for P and find P = nI/(1+cn). Now we know what

we can afford to buy with the available money.
a.

Next, let us assume that the property continuously

appreciates at, the rate of r per year. In t years it is

worth Pert. If it is sold at this point, we pay fPert in

commissions and other costs of divestiture, and we pay off

the bank mortgage, which is still pretty close to P(1-1/n),

its original value) We have left

Pert -
fpert

- P(1-1/n)
1 +

I

cn
fl[(1-nert -(n-1)].

To find our gain per dollar, that -is, our investment gain

ratio, weldivide by the input I, obtaining

(9)
(1-Onert - (n-1)

-1-+ cn

It took t years to produce this gain. At aUniform

rate of increase of x per year, the growth factor'in t years

would have been etx, as shown earlier. What is the value of

x to which our gain is equivalent?

(10) e
xt _I (1-f)nert - (n-1)

I + cn.

so x
° 1

In
(1-f)ne

rt
- (n-1)°

, 1 + cn

This x is a function of.t"and it is our goal to maimize it

that is, we sell at, such a time that our average rate of

gain_iS as large as possible. So we compute dx/dt and set it

to 0:

- or

1 (1-f)rnert 1 (1-f)nert (n-1)
--7

t
(1 )ne

rt
- (n-1) , t

1 + cn

(11-01-Lne
rt t11-Onert - (01-1)
_

. (11dnert - (n-1)
1 + cn

This, needless to say, pis a mess. To facilitate solving

this equation, let us introduce the symbol y for (1
_flnert,

so that rt =ln 01(1-f). Lei us also set w = y - (n-1).
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With this notation, the condition becomes

ln
w
+ Cn

Or y[ln y -_ln n(1-f)] = w[ln w - ln(l+cn)].

There is no hope of solving this equation analytically.

However, the following technique is useful for approximating

solutions.

Let c, f, and n have actual values; for example,

c = f = 0.06, and n = 5 are reasonable. Thus,

ln n(1-f) = 1.5476, ln(l+cn) = 0.13976, and w = y 4. Then

make a .table for various values of both y(1n y 1.5476) and

w(n w 0.13976)-, and see where the former at some y is

equal to the latter at a w that is 4 less.

With these. numbers it turns out that y a 6.85. Thus,

rt a 0.3766. Or if' you let n = 4, then y a 5.70 and

rt 0.4160. Now you merely plug in the actual average rate

of appreciation and solve for t. Some examples are summa-

rized in the table below:

n,= 5 (80%'financing) n = 4 (75% financing)

r = 0.10

0.12

0.14

0.16

t = 3 years, 9 mos.

3' years, 2 mos.

2 years, 8 mos.

2 years, 4 mos.

1

4 years, 2 mos.

3 years, 6 mos.

3 years, 0 mos.

2 years, 7 mos.

----- It is interesting to note that the parameters fix only

the product rt. Since the growth factor is ert, if appears

that the optimal time to sell is'when the growth factor-

( reaches a certain value, irrespective of how loneit takes

or what the appropriate appreciation rate is. The value of

ert at the "right moment" is y/n(1-f), and by Formula-(9)

t e ain per dollar invested is then

y - (n-1) .

1 + cn
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From 'Formula (10) the effective annual percentage rate is

one less' than the tth root of this, where t is the optimal

length of time to keep the investment.

If you sell before these values have been reacted, you

make.less profit and, morl to the point, your average earn-

ing rate is les s; if you sell after these values have beening

reached', you make more profit, but it takes longer and, it

turns out, your average rate of earning is again less.

For the data above, if n = 5, the growth factor of the

property at thee optimal time to sell is 1.46, and each dol-

lar invested will grow to $2.48. The effectiVe annual

percentage rates are, respectively, 27.4%, .33.2%, 40.6%,

and 47.6%. If n = 4, the growth factor is 1.52 and each

dollar will grow to- $2.41. The effective annual percentage

rates are 23.5%, 28. %, 34:1%, and 40.6%, .respectively.

l0. SOLUTIONS TO EXERCISES

4.

5.

6.

7.

8.

9.

10.

11..

Using Per; with P

Using P = 5,000,

2. For Exercise

Using P = 100,000,

40,000e3r = 60,000,

each year it appreciated

increase is 14.4'

root of 1.5 (the

7.2 years (72 + 1

18% (72 4 4)

With G = 100, r =

2 1/2 years), we'get

L = 15,000, M =

when n = 12,1$14,685.87

when n = 24, $14,338.84

when n = 60, $13,064.11

o

= 1,200, r = 0.05, and t :20, we have $3`;*161.94.

r = 0.08, and t = 5, we get $7,459.12 for Exercise

3, we want 5000e5r = 10,000, or r = 1/5 1n 2 = 13.86%.

r = 0.12, t = 2, we get $127,124.90
.

so e3r = 1.5, 3r = In 1.5, r = 13.52%. In

by a factor of e0.1352 = 1.1447, so the

%. Note that 1.1447 is also the cube (3 years)

-year growth factor).

/)

6.05/12, and n = 30 (the number;o1j months in

$3,'181340

150, r = 5/600 = 1/120 (this is 5/6 of 1%), so

remains;

remains;

remains;

1. 9% = .09 = 9/100. The monthly rate is 3/4 of 1% or .75% or .00754

or 9/1200 or 3/400. The interest for 4 months is $7.50 x 4 = $30;

for 5 years it is $450. The growth factors are, respectively. 12. L = 7,000, ,M = 70, r = 3/400, n = 36, so $6,279.83 remains.
1.030 and 1.450; (Note that $1,006, the actual amount of the loan, Note this is most of the original loan. It would take over 15.
Is only required for the computations of the actual interests in

years to pay off this loan completely at the given rate.
\'\\dollars.)

when.n = 120, $9,879.00 remains; and

when n = ZOO, $2,226.23 remains.

2. Using P(l +r /t)nt witty> = 5,000, r = 0.08, n = 5, and

(a) t = 1/5 (once in 5 years,is1/5 times per year), we get $7,000

(b) t = 1, we get $7,346.64

(c) 't = 4, we get $7,429.73

(d) t ='1825, we get $7.449.21"

(e) t= 2,688,000,peyond my calculator!

3. We know 5000(1+r/t)5t = 10,000, or 4)+r/t)5t"= 2. Using various

values of f, we solve- for r:. -

(a) t = 1/5, yields r = 20%

(b) t = 1, yields r= 14.87%

(c). t = 1825, yields r = 13.87%

13. (S) 216 months (or 18 years). In 215 months the balance (by

Formula (4) is $14,864.73, leaving $135.27 to pay; allowing

for interest over the final month, the last payment 14 $136.40.

(b) 186 months. In 185 months the balance is $6,962.94, leaving

$37.06 to pay; calculating interest, the final payment is

$37.34.

14: L = 50,000, r = 11/1200, n = 300, so M = $490.06.

15. M = 250, r = 9.5/1200, n = 360, so L = $29,731.58 (approximately

-----'7
$29,750; the monthly payment for.that additional $20 or so would

be only 15t). . -'4:::`^

16, L = 500, MI= 47.50, n = 12, so r = 24.9 %. This was obtained by

trying various guesses in Formula (4), attempting always to get-as
37

close to $0 4s possible, For example, the guess r = 20% leads to
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a final.balance of -$15.57, so the interest is higher; the

guess r =21i produces -$17.40; -we moved closer by about $3

and need to move $12 more; so next, guess r = 25%, this produces

31c, so it's slightly too high; r = 24.9% produces 3c, which is

plenty close enough!

17. L = 430,

method, r =

interest on

= n = 12, and using the trial and error

28.8%. This dealer is thus charging somewhat more

his loans.

L = 500, M = 48.45, n = 12, so using Formula (4), r = 28.8%.

Since all the figures are proportional, it is reasonable that the

interest rate should be the same as In Exercite 17.

19 (a) Using Formula (5), with M = *50, r = 5/600 = 1/124,and

L= 10,000, we find n = 98 months (actually 97.72):

MBytrYingvariousvalues,ofrinthesamefordsla, with
M = 150, L =-9,000, we Calculate various corresponding

values of n and try to get cloSe to 98. For example, when

r = 12, we find

r = 13,

r = 13,1,

r = 13.05,

n= 92;

n = 97.43;

n = 98.02; and

n = 97.721

Thus, the borrower is paying at to effective annual per-

,centage rate of 13.05% for the use of the $9,000 he actually

received.

20. We want to know what amount $18,000 is 89 of, so we solve

0.80x = 18,000 and find x = 18,000/0.8 = $22,500. If this were

the amount of the loan, and the monthly payment were $225 (which

is 1% of the face value), then after one year, the balance would

be $22,028.80 (u'sing Formula (4) with L = 22,500, M = 225, n = 12,

and r = 1/120). Note this is higher than the actual loan ($18,000),

which means the monthly payment of $225 is \insufficier4 eyen.to pay

thejnterest, and thus the principal is actually groViing larger

rather than smalleor. Our formulas all apply, nonetheless. As

before, we search for the effective annual
*

percentage rate (r) by

trial and error. With L = 18,000', M A 225, n = 12, and using

Formula (4): "
R
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for r = 15, balance is $18,000.00, not high enough, the principal

stays level;

r = 16, $18,193.80, way too low;

r = 29, $18,987.25, still a lot low;

r = 30, $21,103.98, still over $800-low;

r = 34, $22,006.62, very close;

r = 34.1, $22,029.61, virtually exact.

For 2 years, 'the balloon would be $21,508.26, and the effec-

tive annual percentage rate would be 22.8%:

For 5 years, the balloon would be $19,596.16, and the APR

would be 16.2%. Note'then, that the discount has substantially

more effect when the loan is repaid quickly. This is reasonable,

'since it' is a one-time charge, and its effect on the interest rate

is lessened when it is averaged over longer periods.

21. The borrower gets $4,950, which is $5,500 less 10%. The lender

puts up $5,060, which is $5,500 less 8%. The broker gets the

difffrence, which is 2% or $110. From ForMula(4), with L = 5,500,

M = 55, r = 1/120,-and n = 24: the balloon is $5,257.57.

For the borrower, we seek an r such that 12= 4,950, M = 55,

n = 24, and the balloon is $5,257.57. 'By trial and error, when

r = 16%, the balloon is '$5,259.73.

For the lender, we seek an r such that L = 5,060, M = 55,

'n = 24, and the balloon is $5,257.57. By trial and erro when

r = 14,75%, theballoon is $5,259.46.

22. By (4),-,ii.th L a 11,500, M = 115, r = 8/1200 = 1/150, and n = 24

the current value is $10,505.91. The sale price agreed upon is 90%

of this, or $9,455.32 By trial and error, we seek r such that

with L = 11,500, M = 115, n = PI, the ,balance will be $9,455.32.

When r = 3.4%, the balance is $9.456.32, Not too good for this

investor. But the other one should do correspondingly better.

The balloon after three years is $9,946.16, using (4), 11th

L = 11,500, 'M = 115, n = 36, and r = 1/150 So the second in-

vestor paid $9,455.32, received 12 monthly' payments of $115, and

then got $9,946.16,back. The principal was growing, so the $115

per month was insufficient to pay interest. Here, L = 9,455.32,

M = 115,

$9,952.30:

NN

n = 12; by guessing, r = 19.4% yields a balloloof

/ 11
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wait, in
-=

Itisring r

(a) '
is

-5/12o0 , . _
(c). g- . _.;;50200 ti

(61::-1.3:.-766-e-t:e.r...: than (b).,-, :acid--jb)- bettei--Cha-n (a)
Using -r respectively; *-

$100,000, -139 ,F)80 229 an.d :Sp .(c.1,.'e-3iCaSe: than

(b), and (b)--Witoise- _than ta)!,- , -. .

. 25. Using r = 6 the of total- revenue gite-etack-is
. ,.-..

-1.,000,000,T131, .1,000,000/E e-rtdt.-
r

500 006-
$50,534,616.

r3
..-

This is about 1% (one -half million dollars) more than it would-
cost. .The project is worth doing under the assumption of this r,
but clearly, it's "close" and r should be carefully investigated.
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1. HOW floWNEY GROWS

1.1 Accumulation Functions

Money,is worth money. Banks and other financial

institutions are willing to pay you for the use of your

money, which they in turn lend to others. Corporations
use the money you invest in their stock for capital

improvements such as'new factories or'-madhinery, and pay
you dividends for the use of your investment.

A quantity of money infested grows as whit you are
paid for its use is added to your initial investment.

Hew fast it. grows is h measure of Lem much it°is needed
by the borrower. We will be concerned with various ways

of measuring'how fast-this growth occurs.

An accumulation function a(t) is a function which,
gives the amount to which'an initiallinvestment of *1
has accumulated at,time p(t is usually measured in
years.) A change Of scale lets you use an accumulation

function to determine the valUe at title t of any initial

investment by multiplying by an appropriate constant.
Thus if you know th0(3) = 1.15, which means that an

initial investment ofIll grows to 11.15 in 3, years,
then in 3 years $16 .grows to 16(i1.15) =

and 1100 grows to 1115. The graphs of some

reasonable accumulation ;Auctions are shown in Figure 1.

While the functions are atfferent in some rSspects, you
should notice that these functions are all non
decreasing functions of t whose values are 1 when t = O.
The first three of these ,will turn up again later.

1,2 Simple Interest

Figure la) shows a particularly attractive

accumulation function, one whose graph is a straight

as

o

lb)

lc)

0
E
cd

1d)

time in years

1

time in yars

I

000

000
000...

time in years

.

time in years

Figure 1. Several,pOssible accumulation functions.

13J 2



'N4

line. You might choose it as an acCuthulation function

by reasoning that, since in ihe first year an investment

of *1 grows by an amount (say) i, the gtowth in later

years should be by an amount of i per year also. You

may have seen problems in interest based on the formula

I = prt,

where I is the amount of interest paid, p is the

principal (the amount originally invested), r is -the

interest rate, and,t is the tiffie the money was invested.

I computed by this method is called the amount of simple

intlerest earned.

Exercise 1. An investment of 4100 earned 427 in

interest over a 'period of 3 years. At what rate of

simple interest was the investment made?

The graph of the accumulation function for simple

interest is the straight line which passes through the

point-4 (0,1) and (1,1+i). For any,time t, we can

calculate the amount to which an original investment of

41 has accumulated from the formula '

aft) 4 1 +

.Once we choose the straight line i Figure la) as

the graph of the accumulation function or simple

interest, we can calculate-valuels for a(t) even when t

is npt an integer. The expressilon 1 + t is defined for

t any real number. Thus, for i = .06, a /2) = 1.03 is

how much 1 is worth in six months, And a(7[365) = 1 +

74(.06)/365. 1.012 is what 1 invested on Ja 1 has

accumulated to by the Ides of March.

1 0
3

Exercise 2. It takes 8 months for an investment to earn'

440 at a rate of simple interest of 6% per;year. How

long will it take the investment to earn 4100?

1.3 Compound Interest

Interest is said to be compounded when it is

reinvested to begin earning interest on itself. Simple

interest has the fault that eveii though there is more

money in the fund at later times than at time t = 0,

interest is'paid only on the initial investment of 1.

- Compound interest is used to calculate the value of the

fund at time t on the basis of the value of the fund at

time t 1. Thus if in the first year 1 grows to 1 +

then in the second year not only does the 1 grow again

by a factor of 1 + i, but the i does too. A hundred

dollars at 651, interest earns 46 in the first year. If ,

that 46 is compounded, then in the second year the

fund grows to 4106(1.06) = 4112:36. Using the

accumulation function for simple interest would yield

a.(2) = 1 + 2(.06) = 1.12, so 4100 would grow to only

4112. The extra 36i Comes from compounding.

The accumulation function for compound interest is

given by

a(t) = (1 +

Some banks only credit interest to an account

periodically, ,and an accumulation function reflecting

such a policy is graphed in lc). The advantages of

working with a continuous,(and differentiable) function . ,

are so great, though, that the function in Figure lb) i

more often used in mathematical treatments of compo

interest. A bank using'the accumulation function

4



graphed in lb) could-advertise 'interest paid from day
1 of deposit to day of withdrawal.'

Exercise 3. HoW long does it take an investment of

*100 todouble at a rate of simple interest of 5%?

HoW long does 'it take to double at 59b. if interest is

compounded evey'year?

2. .MEASURING INTEREST

2.1 Effective Rates of Interest .

A rate of interest measures the growth of money in
a fund. One way to measure is given by the effective

retie of interest, which gives-the rate'of growth Overa
parirbular year per unit investe'd'at the &ginning of

the year. 'Tf *30 grows, to *40 'in a year, for

example, the interest earned wbs*40 *30 =110,
and the rate-of growth for that year was 10/30 = .33, or
33%. During'the nth year, an initial investment of 1

grows froi a(v- 1) to a(n), so denoting the effective

rate of interest during the ntf year byin, we have :

(4) a(n) - a(n 1)

a(n - 1)

For example, if *93 at the beginning of, the fifth year

ii.e. at time t'= 4) grows to *98 at the end of that

year, the effective rate of interest earned during the

fifth year, i
5' is giVn by

-

a(5) - a(4) 98-93(5) = .0538, or 5.38%.
a(4) 93

1 12

growth in
nth year
(numerator)

amount at
beginning
of nth year
(denominator)

n
th

year

n-1 n time

Figure Sorting out in.

Erercise14. During the,firsf year a,fund grows from

*1000 tq *1060. By the end of the, second year it

has".gcvwn to, *1121. In whic1 year is the effective

rate of interest earned greogier?

Jr

.4If we' know a formula for amn) then we can find i
n4 0 a

as a function of n. For instance, if a(n) Isthe

abcumulation function for simple interest, then '

(6): a(n) 1)

a(n --1)

, 1 4; in (1 i(n 1) )

1 4\i(n 1)

i

4
1 i(n 1):

Since this'Iast expression gets smaller as :gets

larger, simple interest yields,ah ever dec asing .

effective rate of.interest. This fact jibes with the

crittcibm of simple interest mentioned in Section 1.3.

1 3 6
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Oh the other hand, for the accumulation function

,a(t) = (1 + 1)t we have

a(n) - a(n- 1)
i
n

=
a(n = 1)

(7)

1

(1 + On - (1 +i)n-1
.

(1 + OnT1

(1 + i) (1 + (1 + On-1
(1 on-1

4 1)a-1(1 i)

0 (1 +-i)n-1

= 1 + i - 1 = i.

Hence' compound interest gives a constant effective rate

of interest, always equal to the rate of interest in the

first year. This is one reason for viewing compoUnd

interest as the fairest or Most natural,way to cimpute

interest.

Exercise 5. Show that at-an effective rate of interest

of 1%, money left on deposit will double. in 17.7 years.

'How long does it take money to double at an effective

rate of 6% ? 6?

2.2 Nominal Ratesof-In erest*

tg; How often interes s compounded,ipr added to the

account to begin earning interest on its own, can',

influence the rate of growth of an investment. The

accumulation function fqr compound interest was built on

the/assumption that interest was compounded at the end

of eyeiy year, but it is possible to build accumuration

functions based on other assumptions. If interest on an

investment of I were to be compounded every six months

at a rate of 2.5%, then after six months .025 is

7

E

r-'

deposited and afterf the second six months this amount

grows to

(1.025).025 + 1.025 = (1.025) 2
= 1.050625.

If 1 were compounded annually at 5%, it would grow to

only 1.05. Those, extra four decimal places on the end

of 1.050625 are there because the interest deposited at

the end of six months earned interest itself the second

half year. We keep track of how often the interest is

compounded by saying that the money earns interestat a

'nominal rate of 5% compounded semiannually. The

calculation above shows that a nominarrate of A

oompounded semiannually is equivalent to an effective

rate of interest of 5.0625%. Alternately, a nominal

ratel'Of14.939% compounded semiannually is equivalent -to

an effective rate of 5% because (1 + .04939/2)2 = 1.05.

. - It seems reasonable that the more often interest is

compounded, thefasterois-the rate of growth of money in
a fund. The following table shoys this to be true, but

we will see that file rate of growth does not increase

without bound.

ss:

TABLEl
%

-Effect of More Frequent Compounding
oT, on a Nominal Rate of 5%
04

Number of times, per year Cor sponding
Interest is compounded: effective rate:

9*
. (1 +

1 ° (annually) 5%

2 (semiannually,)

4 (quarterly)

12 (monthly)

52 (weekly)

365 (daily)

21900 (every minute)

5.0625%

5.0945%

5.1162%

5.1246%

5.1267%

5.1271%

8



The number in the last column is (1 + .05/n)" 1,

expressed as-a percentage; where n is the number of
times per year that interest is compounded (called

interest conversion periods) given in the first column.

The largest vaiue to hope for in the last column would
be

(8) lim (1 + .05/n)"
n÷co

This would correspond to a fund in which interest is' --

compounded continuously, so tat each instant the -v

interest earned begins earning interest on its own.

Exercise 6. What effective rate of interest corresponds,

to a nominal rate of 8% compounded quarterly?

Exercise 7. Suppose that 1100 was invested at a

nominal rate of 4% compounded quarterly for a period of
18 months. How much interest was earned?

Another way to describe the growth of money is to

compute nominal interest rates that are necessary to

yield an effective rate of interest of'5% ate sear. If

interest is to be compounded k times a years Int a

nominal rate i, then we want

(1 + i/k)k = 1.05.

/1 + i/k ( 405)1/k,

(9) i = k((1.05) l/k 1).

This gives

so

Table 2 shows values of i (as percentages) for selected
value's of k.

TABLE 2

Effect of More Frequent Compounding to Yield
an Effective Rate of 5%, Computed from Eq. (9)

Number of times per year Nominal rate i required
interest is compounded (k) to yield 53 effective

1 5%

2 4%9390%
4 4.9089%
12 4.8889%
52 4.8813%
365 4.8793%
/1300 4.8790%

You,might suspect from the values shown in Table 2
that the more often interest is compounded, the smaller

the nominal rate must be to achieve a given effective

rate. -Theqlallest value to hope for here is

(10) lim n((1.05)
l/n

1).
n+°

Exercise 8. What expression would have lo be evaluated
to compute the value of f in Tdble 2 corresponding to

interest computed every second ?
I

2.3 Notation

A notation to handle nominal rates of interest must

include the number of times interest is reinvested per
year. The atadard way of writing a nominal interest
rate of i compounded if times year is i(n) (read as i

upper n). This rate specifies an effective rake of

interest of i/n compounded every nth fraction of a year.
Hence i

(2)
s a nominal' rate of i compounded

semiannually and i
(12)

is a nominal sate of i compounded

9 1(17 lb



monthly. The last column of Table. 1 then gives, for

instance, the effective rate of interest corresponding

to .05(4) is 5.0945%. Money in a fund earning 5.09455.

interest compoundedonce a year grows just as fast as .

money invested at a nominal rate of 5% compounded

quarterly.

Exercise,9. Use Table 1 to find .05(12)

Exercise 10. Friendly.Harry's Loan Shoppe offers

unsecured loans of up to 1500 with interest payments

of 59 per month (these payments are Called 'vigorish' in

the tr4de). Write the nominal annual rate Harry earns.

What effective rate does he earn on these investments?

3. THE FORCE OF INTEREST

3.1 How to Use the Derivative

The derivative of a function at a point has a

natural interpretation as the rate of change othe

function at that point, so-it would be nice to harness

the derivative of the accumulation function to describe

the rate of growth of a monetary, fund due to interest

accruing. The derivative of the accumulation function

alone, however, is inappropriate because it is

influenced by the value of a(t), whereas interest rates

Ooted before were concerned not with absolute growth

but with growth-relati to the amount invested. A fund

with 1200 in it earns interest twice as fast (it earns

twice as much in interest in a given time) as a fund

with $100 in it, yet the rate of interest is the same

for each. r

11

. In Equation (4) the absolute growth of the fund is

given by a(n) a(n - 1), but thethe effective rate of

in erest, is that difference divided by a(n :-. 1). We

sat in Section 2.1 that if the accumulation function is

the one for simple interest then there is ab decreasing

effective rate of interest. But when .a(t) = 1 +it,

da/dt = i, a constant. We need to take into account the

value of a(t) as well to get the true picture of the
- .

growth of money.

3.2 A Rate of Change per Unit Invested

What matters in the computation of an effective

rate of interest i
n

s not only the growth during the

n
th

year but also the amount thatthe n
th

year started

with. To measure the instantaneous rate of change of

a(t),we will use the derivative of a(t), but the

instantaneous rate of change per unit invested is the

measure of the rate of change associated with interest:

With this in mind, we define the force of interest

function S(t) associated with a.particular accumulation

function a(t)*by

S(t) =-Ii'(0/4t).

The function SW gives the relative change in a(ti.

For a given t, S(t) will usually'be gilmen as a

decimal which can be expressed as a percent to measure

how fast the fund is growing at that time,: A useful

observation is that S(t) = d(ln(a(t)))/dt. To see why

thisis true, notice firlt that a(t) is 1 when t is 0-

and nondecreasing thereafter, so a(t) > 0 and there is

no danger that In a(t) will be undefined. An

application of the Chain Rule gives

1 d
(12) S(t) = d(ln(a(t)))/d aft).

a(t) dt

12



For example, if

4(0 * (1 +

then

8(t) = d(ln(1 + i)t)/dt

(13) = d(t lu(1 + 0),/dt

= ln(1 +

= ln(1 + i)..

The. constant ln(1 + i) is the force of interest at any

time t if we assume a(t),is the: accumulation function

for compound 'interest .4

Exercise 11. Show a(t) = 1 + 12 is an increasing

Junction for t > 0 (and therefore an'allowable,

accumulation function). Calculate 8(t), and find 6(4).

Exercise 12. Find 6(t) for a(t) the accumulation

function for simple interest. How does 8(t) behave as t
increases?

3.3 Relation to Other Measurements of Interest

We have given the most emphasis so far to compound

interest, and shall continue to do so. The function
a(t) =.(1 + i)t can also be represented in terms of

nominal interest rates:. If i(2)A.s the nominal rate

compounded semiannually whirg yields the effective rate
.

i, then ,

and so

(2) 2(1 + i /2) = 1

.(2) 2t(1 + /2) = (1 +

150 13

Thus

.(2)
(1 + 4- /2)

.s.

gives, the same accumulation function as

(1 +
t

= a(t).

1

2

Figure 3. Secants and a tangent: Average rates
of growth, and an instantaneous rate.

.

The average rate of growth of the function a(t) =
(1 + i)

t
over the interval [0,1] is given,by the

difference quotient.

(14) (1 + i)1 (1 + i)0
1 0

This means that the averagp rate of growth over the

first year is i. Equivalently, i is the slope of the

secant line between (0,1) and 11,1+ i). The average

rate of growth over the interval [0,1/2] is

it

(15) (1 + i)1/2 _4(1 i)0

1/2 0

40

2((1 +
01/2

=

14

. .
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To verify that the last equality holds, solve the

equation (1 + 1(2)/2)2 = 1 + i for i
(V.;

The derivative is defined as the limit of a

difference quotient as the,ypitth of the interval

approaches zero. For the portion of a year from time 0

to time'l /n, the difference quotient is

(16) (1 + 0
1/n

(1 + i)
0

n((1 + i)
l/n (n) .

1) =
i(n)=

1/n, 0

. e width of the interval here is 1/n, and we can make

t e width approach 0 by letting n get larger. Then the

instantaneous rate of chaise of the accumulation

function a(t) = (1 + 4t,/at t = 0 is

EOM = urn
n*co 1/n 0

= lim
(n)'.

nla:

The limit in this equation is-the same as-the limit that

occurred in Section 2.2 for i = 5%, but-now we can

evaluate it as d(a(t))/dt at t = 0 for a(t) = (1 + i)
t

.

It is

(1 + i)
1/n

(1 + i)
0

d /dt et 1r611.05 = e
t In 1.0

5(ln 1.05),

whic is just' In 1.05 when t = 0. Youllean verify that

In 1.b4 = 0.048790 to 6 decimal places to see that the

last entry in Table 2 hits pretty close. The decreasing

numbers in the second column of Table 2 correspond to

the (e;agerateday) decreasing slopes as the width of the

subinterval gets smaller in Figure 3.

Elercise 13. Find 141 (0.06)(n).
n40,

152
4k

,15

3.4 Continuous Compounding and Yield Rates

Banks are limited by law as to the largest interest

rate they can pay on savings accounts. Such laws are

intended to keep banks from offering fiscally unsound

rates in the spirit of competition. A nominal rate se--

specified, however, can be Compounded by the bank as

often as it likes. The, effect of compounding more often

is to raise the effective rate of interest, as

illustrated in Tablel with a nominal rate of 5%. The

highest effective rate a blink can pay is found by taking

the nominal rate quoted to be 6(t). Thus if the nominal

rate quoted is 5%, the effective rate i can be found by,,.

solving the equation 0

ln(1 + i) = .05.

The equation is solved by exponentiating both sides to

get,

ln(1 + i)
= ee

so that

1 + i = e
.05

and

.i= e
05

1 = .0512'71.

The value of i found in this manner is often called the

yield rate, so that altypical bank advertisement might

say, 'Your savings earn interest at an annual rate of

5%, compounded continuously to give you a whopping 5.13%

annual yield.' In practice, since there is little

.difference4a thie rate whether a bank compounds daily or

. continuously (see the last entry in,Table 1), more often

,the yield rate quoted i.s based on a daily compounding of

interest_to spare the bank from having to explain

calculus to its customers.
,
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Exercise 14. What yield rate is associated with

nominallrate of Wo?

' Exercise 15. 'What imminal rate is associated with a

yield rate of 8%?

Ia

3

17

MODEL EXAM

. Why can't accumulation functions be used to model

the behavior of common stocks?

2. Which of the following functions are suitable

accumulation functions?

a) t
2

+ 1 b) t2 t

3. Suppose you know S(t)' has the value

to be

el
c) 1 t

2 c)
) 1

0.045 for any t.

Describe a(t).

4. What effective

nominal rate lof. 1 %

5. Rank the following

ascending order: O.

of interest corresponds to a

compounded monthly?

effective interest ratflVn

05, 0:05
(2)

, 0.05
(4)

,

6. When does SW = al(t)?

7. A bank pays 8% compounded continuously. What rate

compounded yearly must anotherlbank pay for depoits

to grow as fast as at the first bank?

18
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ANSWERS TO EXERCISES

1. We are given I = 27, p = 100, and t = 3.

Substitution into I = prt gives r = .09, or 9%.

2. Eight months is 2/3 of a year. Using t = 2/3, I =

40, and r = .06 in I = prt gives p = 1000. Now we

want t given p = 1000, r = Al, and I = 100; so

plugginrthis' information into I = prt gives t =

5/3 yeari% or 20'months.

3. i100 grows to $200 in the *me amoun:of time

it takes 31 to grow to $2. Solve a(t) = 1 + it

= 1 + .05 t = 2 for.t to find t = 20 yefirs, for

simple interest. For compound interest we must

solve a(t) = (1 + i)
t
= (1.05)

t
= 2. Taking the

natural logarithmof both sides gives 1p(1.05)
t

=

In '2, so t = In 2/1n 1.05 = 14.2 years.

4. i
1
='(a(1) - a(0))/a(0) = (1060 1000)/1000 = 1.06,

and i
2

= (a(2) a(1))/a(1) =SI121 1060/1060 =

.0575. .The effective rate is greater the first

year.

5. Solve 1.041'= 2 by the natural logarithm of

both sides to get t = In 2/1n 1.04 = 17.7. when i

=.06, i-= la'-2/1n 1.06 = 11.9 and whanO = .08, t

= In 24n 1.08 = 9.0. A handy_ rule of thumb called

the Rule of 72 is that the time it takes a given

amount of money to double at rate i is aproximately

72 divided by the interest rate expressed as

percent, Money invested at 12% will double 1:tiqOpout

- 72/12 = 6 years.

6. 8% compounded quarterjy is 2% every quarter, During

one, year (four quarters) 1 grows to (1.02)
4

=

1.0824, so the effelcfive rate is .0824, or 8.24%.

19

7. 100 grew to.(1.01)
6

100 = 106.51. The interest

earned is 16.51.

8. There are 21900x60 = 1,31%000 seconds in a year.

We would have to compute

1314000(11.05)
1/1314000

1),

9. .05
(12)

= .051162, or 5.11622.

10. The nominal annual sate he earns. is 12(5%). 60%.

If Harry's customers don't pay on time, he can

(charge them interest on the unpaid interest to reap

Ilan effective annul1 rate of 1.0512 -1 = 0.796, or

almost 80%. That is why he drives an El Dorado.

11. a(0) =,1 + 0
2
= 1, and a'(t) = 2t > 0 for t > 0

says that set) is an increasing fudotion for t > O.

8(t) = 2t/1 + t
2

and 8(4)'='8/17.

12. If a(t) = 1 + it, then a'(t) = i and 8(t) = +

it. This expression decreases as t increases, just

as i
n

decreases for simple interest.

13. ln 1.06 = 0.0c5
Y

14. Soll,re ln(i + i) = .08 to get i = 8.33%.2

15. Solve ln(1.08) = i to get i = 0.0770, or 7.7%.

SOLUTIONS TO MODEL EXAM

1. UnfortUnately, common stocks can not be relied on

not to decrease

2. (a) and (d) are. (b) is not suitable because a(0)

# 1. (c) is not suitable because it is decreasing

for t > O.

'3. 8(t) was constant, and equal to ln(1 + i), when a(Y)

was an accumulation function for compound interest.

With 8(t) = a(t)*='e
.045t.

20



0
4. 1.01

12
= 1.120, so i = 12.68%.

5. ln(1.05) < .05 < .05
(2)

<, .05
(4)

.

6. a'(t) /a(t) = a'(t) if a(t) =, 1. This happens-when t

= 0.

7. The effective rate paid by the first bank is e
.08

1 = 0.0833, or 8.33%. The second bank must pay

8.33% compounded annually.

.
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EDC/UMAP
55 Chapel St.
Newton, MA 02160

,) STUDENT FORM 1

Request for Help

Student: If you have trouble with a specific part of this unit, please fill
out this form and take it to your instructor for assistance. The information
you give will help the author to revise the unit.

Your Name

Page

o Upper

0Midgile

Q Lower

OR
Secti,Rn

Paragraph

Description of Difficulty: (Please be specific)

OR

Unit No.

Model Exam,
Problem No.

Text
Problem No

T.

Inst ctor: Please indicate your resolution of the difficulty in this box.

A

Corrected errors in materials. List corrections here:

(2) Gave student better explanation, example, or procedure than in unit.
Give brief outline of your addition here:

0 Assisted student in acquiring general learning and problem-solving
skills (not using examples from this unit.)

i

F.4

Instructor's Signature

q

Please use reverse if necessary.



STUDENT FORM 2

Unit Questionnaire

Name Unit No.

Institution Course No.

Date

Return to:
EDC/UMAP
55 Chapel St.
Newton, MA 02160

Check the choice for each question that comes closest to your personal opinion.

1. How useful was the amount of detail'in.the unit?
-7

Not enough detail to understand'ihe unit
Unit would have been clearer with more detail
Appropriate amount of detail
Unit was occasionally too detailed, but this was not distracting
Too much detail; I was often distracted

3,

2. How helpful were the problem answers?

Sample solutions were too brief; I could not do the intermediate steps
,Sufficient information was given to solve the problems,
Sample solutions were too detaileu;,I didn't need them

3. Except for fulfilling the prerequisites, how much did you use other sources (for
example, instructor, friends, or other books) in order to understand the unit?

A Lot Somewhat A Little Not at all

4. -How long was this unit in comparison to theamount of time you generally spend on
a lesson (lecture 'and homework assignment) in a typical math or science course?

Much Somewhat About Somewhat Much
Longer Longer the Same . Shorter Shorter

5. Were any of the following parts of the unit confusing or distracting? (Check
'as many as apply.)

i'rerequisites

Statement of skills and concepts (objectives)
Paragraph headings
Examples
Special Assistance Supplement (if present)
Other, please explain

6. Were any of the following parts of the unit particularly helpful? (Check as many
as apply.)

Prerequisites
Statement of skills and concepts (objectives)
Examples
Problems
Paragraph headings
Table of Contenta
Special Assistance Supplement (if present)
Other, please explain'

'Please describe anything in the unit that you did not particularly like.

Please describe anything that y )found articularly helpful. (Please use the'back of

this sheet ifyou need more spac


